【题目】已知 a、b、c 在数轴上的位置如图:
![]()
(1)用“<”或“>”填空:a1 0; cb 0; b1 0;
(2)化简:
;
(3)若abc0,且b与1的距离和c与1的距离相等,求下列式子的值:2b c (a 4c b).
参考答案:
【答案】(1) >,<,< ; (2)a+c;(3) -8
【解析】
(1)根据数轴上点的位置进行计算比较大小即可;
(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果;
(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.
解:(1)根据题意得:c<0<b<1<a
∴a1>0; cb<0; b1<0
(2)∵a+1>0,c-b<0,b-1<0,
∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c;
(3)由已知得:b+1=-1-c,即b+c=-2,
∵a+b+c=0,即-2+a=0,∴a=2,
则2b c (a 4c b).
=2b c a 4c b
=3(b+c)-2=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是平行四边形,以AB为直径的⊙0经过点D,E是⊙O上一点,且∠AED=45°,

(1)求证:CD是⊙O的切线.
(2)若⊙O的半径为3,AE=5,求∠DAE的正弦值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在平面直角坐标系中,直线l:
与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形
,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点
的坐标是_______________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
,
两点在数轴上,点
表示的数为-10,点
到点
的距离是点
到点
距离的3倍,点
以每秒3个单位长度的速度从点
向右运动.点
以每秒2个单位长度的速度从点
向右运动(点
、
同时出发)
(1)数轴上点
对应的数是______.(2)经过几秒,点
、点
分别到原点
的距离相等. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:b是最小的正整数,且a、b满足
,请回答问题:(1)请直接写出a、b、c的值: a=______; b=________; c=________.
(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.

(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:
我们知道|x|的几何意义是:在数轴上数x对应的点与原点O的距离,这个结论可以推广为:|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.
例:解方程|x﹣1|+|x+2|=5.
由绝对值的几何意义知,该方程表示:求在数轴上与1和﹣2的距离之和为5的点对应的数,而在数轴上,1和﹣2的距离为|1﹣(﹣2)|=3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,

由图可知看出x=2;同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.
参考阅读材料,解答下列问题:
(1)方程|x﹣2|+|x+3|=7的解为 .
(2)代数式|x﹣1|+|x+4|的最小值为 .
(3)如图,点A、B、C是数轴上的三点,A点表示数是-3,B点表示数是-1,C点表示数是6,点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= .(用含t的代数式表示)

(4)在(3)的条件下,若mAC﹣4AB的值不随着时间t的变化而改变,试确定m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.
(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?
(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?
相关试题