【题目】如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是( )
![]()
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 若点(﹣2,m),(﹣5,n)在抛物线上,则m>n
D. 关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1
参考答案:
【答案】C
【解析】试题分析:选项A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ac>0所以b2>4ac,故A选项正确;选项B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c≥﹣6,故B选项正确;选项C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;选项D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.张刚按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.
(1)张刚在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设张刚获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果张刚想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】计算
(1)
(2)

(3)
(4)﹣14﹣2×[5﹣(﹣3)2].
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线
与坐标轴交于
、
两点,与反比例函数
在第一象限内的图像交于点
,反比例函数图像上有一点
,连接
和
,已知:
.(1)求一次函数和反比例函数的解析式.
(2)求△AOD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】无论m取什么实数,点A(m+1,2m﹣2)都在直线l上.若点B(a,b)是直线l上的动点,则(2a﹣b﹣6)3的值等于____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是( )
A.a=5,b=1
B.a=﹣5,b=1
C.a=5,b=﹣1
D.a=﹣5,b=﹣1 -
科目: 来源: 题型:
查看答案和解析>>【题目】根据下列表述,能确定位置的是( )
A. 光明剧院 2 排 B. 某市人民路 C. 北偏东 40° D. 东经 112°,北纬 36°
相关试题