【题目】一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x(h),两车到甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图.
(1)求轿车从乙地返回甲地时的速度和t的值;
(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围;
(3)直接写出轿车从乙地返回甲地时与货车相遇的时间.
![]()
参考答案:
【答案】(1)5(2)y=﹣120x+600(3≤x≤5)(3)![]()
【解析】
(1)利用行驶的速度变化进而得出时间变化,进而得出t的值;
(2)利用待定系数法求一次函数解析式进而利用图象得出自变量x的取值范围;
(3)利用函数图象交点求法得出其交点横坐标,进而得出答案.
解:(1)∵一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,
∴行驶的时间分别为:
=3小时,则
=2小时,
∴t=3+2=5;
∴轿车从乙地返回甲地时的速度是:
=120(km/h);
(2)∵t=5,∴此点坐标为:(5,0),
设轿车从乙地返回甲地时y与x之间的函数关系式为:y=kx+b,
∴
,
解得:
,
∴轿车从乙地返回甲地时y与x之间的函数关系式为:y=﹣120x+600(3≤x≤5);
(3)设货车行驶图象解析式为:y=ax,
则240=4a,
解得:a=60,
∴货车行驶图象解析式为:y=60x,
∴当两图象相交则:60x=﹣120x+600,
解得:x=
,故
﹣3=
(小时),
∴轿车从乙地返回甲地时与货车相遇的时间
小时.
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.
第一天
第二天
第三天
第四天
第五天
第六天
第七天
路程(km)
﹣8
﹣11
﹣14
0
﹣16
+41
+8
(1)请求出这七天平均每天行驶多少千米;
(2)若每行驶100km需用汽油6升,汽油价6.2元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】列方程式应用题.
天河食品公司收购了200吨新鲜柿子,保质期15天,该公司有两种加工技术,一种是加工为普通柿饼,另一种是加工为特级霜降柿饼,也可以不需加工直接销售.相关信息见表:
品种
每天可加工数量(吨)
每吨获利(元)
新鲜柿子
不需加工
1000元
普通柿饼
16吨
5000元
特级霜降柿饼
8吨
8000元
由于生产条件的限制,两种加工方式不能同时进行,为此公司研制了两种可行方案:
方案1:尽可能多地生产为特级霜降柿饼,没来得及加工的新鲜柿子,在市场上直接销售;
方案2:先将部分新鲜柿子加工为特级霜降柿饼,再将剩余的新鲜柿子加工为普通柿饼,恰好15天完成.
请问:哪种方案获利更多?获利多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数y1=kx+b(k≠0)与反比例函数y2=
(m≠0)相交于A和B两点,且A点坐标为(1,3),B点的横坐标为﹣3.(1)求反比例函数和一次函数的解析式;
(2)根据图象直接写出使得y1>y2时,x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.
(1)当x≥200时,求y与x之间的函数关系式
(2)若小刚家10月份上网180小时,则他家应付多少元上网费?
(3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果A、B两点在数轴上分别表示有理数a、b,那么它们之间的距离AB=|a﹣b|.如图1,已知数轴上两点A、B对应的数分别为﹣3和8,数轴上另有一个点P对应的数为x
(1)点P、B之间的距离PB= .
(2)若点P在A、B之间,则|x+3|+|x﹣8|= .
(3)①如图2,若点P在点B右侧,且x=12,取BP的中点M,试求2AM﹣AP的值.
②若点P为点B右侧的一个动点,取BP的中点M,那么2AM﹣AP是定值吗?如果是,请求出这个定值;如果不是,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,PE与DC交于点O.

(基础探究)
(1)求证:PD=PE.
(2)求证:∠DPE=90°
(3)(应用拓展)把正方形ABCD改为菱形,其他条件不变(如图),若PE=3,则PD=________;
若∠ABC=62°,则∠DPE=________.

相关试题