【题目】如图,山脚下有一棵树AB,小强从点B沿山坡向上走50m到达点D,用高为1.5m的测角仪CD测得树顶为10°,已知山坡的坡脚为15°,则树AB的高=(精确到0.1m)(已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27).![]()
参考答案:
【答案】23.2m
【解析】解:由题意可得,
BD=50m,CD=1.5m,∠ACE=10°,∠DBP=15°,
∴DP=BDsin15°≈50×0.26=13m,
BP=BDcos15°≈50×0.97=48.5m,
∵CE=BP,
∴AE=CEtan10°≈48.5×0.18=8.73m,
∴AB=AE+CD+DP=8.73+1.5+13=23.23≈23.2m.
所以答案是:23.2m.
【考点精析】本题主要考查了关于坡度坡角问题的相关知识点,需要掌握坡面的铅直高度h和水平宽度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面与水平面的夹角记作A(叫做坡角),那么i=h/l=tanA才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车同时从
地出发前往
地.甲车中途因故停车一段时间,之后以原速继续行驶,与乙车同时到达
地.下图是甲、乙两车离开
地的路程
与时间
之间的函数图象.
(1)甲车每小时行驶_________千米,
的值为________.(2)求甲车再次行驶过程中
与
之间的函数关系式.(3)甲、乙两车离开
地的路程差为8千米时,直接写出
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图所示,四边形ABCD中,∠B=∠D=90°,AE平分∠DAB,AE//CF.
(1)说明:CF平分∠BCD;
(2)作△ADE的高DM,若AD=8,DE=6,AE=10,求DM的长。

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:点A在射线CE上,∠C=∠D.
⑴如图1,若AD∥BC,求证:BD∥AC;
⑵如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;
⑶如图3,在⑵的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,把平面内一条数轴
绕原点
逆时针旋转角
得到另一条数轴
轴和
轴构成一个平面斜坐标系.过点
作
轴的平行线,交
轴于点
,过点
作
轴的平行线,交
轴于点
.若点
在
轴上对应的实数为
,点
在
轴上对应的实数为
,则成有序实数对
为点
的斜坐标.
(1)在某平面斜坐标系中,已知
,点
的斜坐标为
,点
与点
关于
轴对称,求点
的斜坐标.(2)某平面斜坐标系中,已知点
,求出点
关于
轴、
轴的对称点
点、
点的斜坐标.(用含
及
的式子表示).(3)直接写出点
关于原点对称的点的斜坐标是_________. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,矩形
的边
的边分别在
轴,
轴正半轴上,
, 点
从点
出发以每秒2个单位长度的速度向终点
运动,点
不与点
重合以
为边在
上方作正方形
,设正方形
与
的重叠部分图形的面积为
(平方单位),点
的运动时间为
(秒).
(1)直线
所在直线的解析式是__________________________.(2)当点
落在线段
上时,求
的值.(3)在点
运动的过程中,求
与
之间的函数关系式;(4)设边
的中点为
,点
关于点
的对称点为
,以
为边在
上方作正方形
当正方形
与
重叠部分图形为三角形时,直接写出
的取值范围.(提示:根据点
的运动,可在草纸上画出正方形
与
重叠部分图形为不同图形时的临界状态去研究.) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

相关试题