【题目】如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).
![]()
(1)当t为何值时,四边形PQDC是平行四边形
(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?
(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.
参考答案:
【答案】(1)当 t=5秒时,四边形PQDC是平行四边形(2)当t=9或15秒时,以C,D,Q,P为顶点的梯形面积等
(3)当
秒或
秒时, △BPQ是等腰三角形
【解析】
(1)由题意已知,AD∥BC,要使四边形PQDC是平行四边形,则只需要让QD=PC即可,因为Q、P点的速度已知,AD、BC的长度已知,要求时间,用时间=路程÷速度,即可求出时间;
(2)要使以C、D、Q、P为顶点的梯形面积等于60cm2,可以分为两种情况,即点P、Q在BC、AD,点P在BC延长线上,再利用梯形面积公式,即(QD+PC)×AB÷2=60,因为Q、P点的速度已知,AD、AB、BC的长度已知,用t可分别表示QD、BC的长,即可求得时间t;
(3)使△PQD是等腰三角形,可分三种情况,即PQ=PD、PQ=QD、QD=PD;可利用等腰三角形及直角梯形的性质,分别用t表达等腰三角形的两腰长,再利用两腰相等即可求得时间t.
-
科目: 来源: 题型:
查看答案和解析>>【题目】火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a、b 、30的箱子(其中a>b),准备采用如图①、②的两种打包方式,所用打包带的总长(不计接头处的长)分别记为
. 
(1)图①中打包带的总长
=________. 图②中打包带的总长
=________.(2)试判断哪一种打包方式更节省材料,并说明理由.(提醒:先判断再说理,说理过程即为比较
的大小.) (3)若b=40且a为正整数,在数轴上表示数
的两点之间有且只有19个整数点,求a 的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知A=x-2y,B=-x-4y+1.
(1)求2(A+B)-(A-B);(结果用含x,y的代数式表示)
(2)当
与
互为相反数时,求(1)中代数式的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】一位射击运动员在10次射击训练中,命中靶的环数如图. 请你根据图表,完成下列问题:

(1)补充完成下面成绩表单的填写:射击序次
1
2
3
4
5
6
7
8
9
10
成绩/环
8
10
7
9
10
7
10
(2)求该运动员这10次射击训练的平均成绩. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,BD⊥AC,AB=6,AC=5
,∠A=30°.
①求BD和AD的长;
②求tanC的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
|,
,且
,求
的值.解:(1)因为
,所以
______;因为
,所以
______;又因为
,所以当
______时,
______;或当
______时,
______,∴
______或_______. -
科目: 来源: 题型:
查看答案和解析>>【题目】有4张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:

(1)从中取出2张卡片,使这2张卡片上数字之积最大,最大值是________.
(2)从中取出2张卡片,使这2张卡片上数字之差最小,最小值是________.
(3)从中取出4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,请写出一种符合要求的运算式子________.(注:4个数字都必须用到且只能用一次.)
相关试题