【题目】为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:
(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?
(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?
![]()
参考答案:
【答案】(1)
;(2)30;(3)这次消毒是有效的.
【解析】试题分析: (1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(8,6)代入即可,从图上读出x的取值范围;药物燃烧后,设出y与x之间的解析式y=
,把点(8,6)代入即可;
(2)把y=1.6代入反比例函数解析式,求出相应的x;
(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,>等于10就有效.
试题解析:
解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1
∴k1=![]()
设药物燃烧后y关于x的函数关系式为y=
(k2>0)代入(8,6)为6=
,
∴k2=48
∴药物燃烧时y关于x的函数关系式为
(0≤x≤8)药物燃烧后y关于x的函数关系式为
(x>8)
∴
(2)结合实际,令
中y≤1.6得x≥30
即从消毒开始,至少需要30分钟后学生才能进入教室.
(3)把y=3代入
,得:x=4
把y=3代入
,得:x=16
∵16﹣4=12
所以这次消毒是有效的.
点睛: 现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P1(x1,y1)、P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线l上的点,且﹣1<x1<x2,x3<﹣1,则y1、y2、y3的大小关系为( )

A. y1<y2<y3 B. y3<y1<y2 C. y3<y2<y1 D. y2<y1<y3
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:
①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0;⑤4ac﹣b2<0,正确的序号是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(10分)如图①,在△ABC中,∠ACB=2∠B,AD为∠BAC的角平分线,
求证:AB=AC+CD
小明同学经过思考,得到如下解题思路:
在AB上截取AE=AC,连接DE,得到△ADE≌△ADC,从而易证AB=AC+CD
(1)请你根据以上解思路写出证明过程;
(2)如图②,若AD为△ABC的外角∠CAE平分线,交BC的延长线于点D,
∠D=25°,其他条件不变,求∠B的度数。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是( )

A. ①②④ B. ②③④
C. ①②③ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示, AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,画出图象并根据函数图象回答下列问题:(1)列表、描点、连线
x

(2)
的两个解是多少?(3)x取何值时,y>0?
(4)x取何值时,抛物线在x轴上或下方?
(5)抛物线
与直线y=k有唯一的交点,则k= .
相关试题