【题目】为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:
月用水量(吨) | 4 | 5 | 6 | 9 |
户数 | 3 | 4 | 2 | 1 |
则关于这10户家庭的月用水量,下列说法错误的是 ( )
A.中位数是5吨
B.众数是5吨
C.极差是3吨
D.平均数是5.3吨
参考答案:
【答案】C
【解析】由统计表可知中位数是5,众数是5,故A、B正确,极差是9-4=5,故C错误,平均数是
=5.3,故D正确;
所以答案是:C.
【考点精析】解答此题的关键在于理解算术平均数的相关知识,掌握总数量÷总份数=平均数.解题关键是根据已知条件确定总数量以及与它相对应的总份数,以及对中位数、众数的理解,了解中位数是唯一的,仅与数据的排列位置有关,它不能充分利用所有数据;众数可能一个,也可能多个,它一定是这组数据中的数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△A1B1C1、△A2B2C2、△A3B3C3、…、△AnBnn均为等腰直角三角形,且∠C1=∠C2=∠C3=…=∠n=90°,点A1、A2、A3、…、An和点B1、B2、B3、…、Bn分别在正比例函数y=
x和y=﹣x的图象上,且点A1、A2、A3、…、An的横坐标分别为1,2,3…n,线段A1B1、A2B2、A3B3、…、AnBn均与y轴平行.按照图中所反映的规律,则△AnBnn的顶点n的坐标是_____;线段C2018C2019的长是_____.(其中n为正整数)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=
x2+
x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,
)在抛物线上,直线AC与y轴交于点D.
(1)求c的值及直线AC的函数表达式;
(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.
①求证:△APM∽△AON;
②设点M的横坐标为m,求AN的长(用含m的代数式表示). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点C是AB上一点,△ACM、△CBN都是等边三角形.
(1)说明AN=MB;
(2)将△ACM绕点C按逆时针旋转180°,使A点落在CB上,请对照原题图画出符合要求的图形;
(3)在(2)所得到的图形中,结论“AN=BM”是否成立?若成立,请说明理由;若不成立,也请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长是4,点E是BC的中点,连接DE,DF⊥DE交BA的延长线于点F.连接EF、AC,DE、EF分别与C交于点P、Q,则PQ=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以等边三角形ABC的BC边为直径画半圆,分别交AB,AC于点E,D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )

A.4
B.
C.6
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在□ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是( )

A. ∠E=∠CDF B. BE=CD C. ∠ADE=∠BFE D. BE=2CF
相关试题