【题目】请你完成下面的证明:
已知:如图,∠GFB+∠B=180°,∠1=∠3,
求证:FC∥ED.
证明:∵∠GFB+∠B=180°
∴FG∥BC( )
∴∠3= ( ),
又∵∠1=∠3(已知)
∴∠1= (等量代换)
∴FC∥ED( )
![]()
参考答案:
【答案】同旁内角互补,两直线平行;∠2;两直线平行,内错角相等;∠2;同位角相等,两直线平行.
【解析】
根据平行线的判定和性质,再根据等量代换得出∠1=∠2,再根据同位角相等,即可证明两直线平行.
证明:∵∠GFB+∠B=180°
∴FG∥BC(同旁内角互补,两直线平行)
∴∠3=∠2(两直线平行,内错角相等),
又∵∠1=∠3(已知)
∴∠1=∠2(等量代换)
∴FC∥ED(同位角相等,两直线平行);
故答案为:同旁内角互补,两直线平行;∠2;两直线平行,内错角相等;∠2;同位角相等,两直线平行.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列两则材料,回答问题,材料一:定义直线y=ax+b与直线y=bx+a互为“共同体直线”,例如,直线y=x+4与直线y=4x+l互为“共同体直线”.
材料二:对于半面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),P1、P2之两点间的直角距离d1(P1,p2)=|x1﹣x2|+|y1﹣y2|:例如:Q1(﹣3,1)、Q2(2.4)两点间的直角距离为d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8; P0(x0,y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做Po到直线y=ax+b的直角距离.
(1)计算S(﹣2,6),T(1,3)两点间的直角距离d(S,T)= ,直线y=4x+3上的一点H(a,b)又是它的“共同体直线”上的点,求点H的坐标.
(2)对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m﹣3n)在它的“共同体直线”上,试求点L(10,﹣
)到直线y=ax+b的直角距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,下列条件中,能判断直线L1∥L2的是( )

A. ∠2=∠3 B. ∠l=∠3 C. ∠4+∠5=180
D. ∠2=∠4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图抛物线与x轴分别交于A、B两点,顶点C在y轴负半轴上,也在正方形ADEB的边上,已知正方形ADEB的边长为2,若正方形FGMN的顶点F、G落在x轴上,顶点M、N落在图中的抛物线上,则正方形FGMN的边长为.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线a:y=2x+4分别与x、y轴交于点A、C.将直线a竖直向下平移7个单位后得到直线b,直线b交直线AD:y=x+2于点E.
(1)若点Q为直线x轴上一动点,是否存在点Q,使△QDE的周长最小,若存在,求△QDE周长的最小值及点Q的坐标:
(2)已知点M是第一象限直线a上的任意一点,过点M作直线c⊥x轴,交直线b于点N,H为直线AD上任意一点,是否存在点M,使得△MNH成为等腰直角三角形?若存在,请直接写出点H的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:
①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上;④点C在AB的中垂线上.
以上结论正确的有( )个.

A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在锐角三角形ABC中,直线l为BC的中垂线,射线m为∠ABC的角平分线,直线l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP的度数是( )

A. 24° B. 30° C. 32° D. 36°
相关试题