【题目】在每个小正方形的边长为1的网格中.点A,B,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.
(1)如图①,当BE=
时,计算AE+AF的值等于 ;
(2)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明) .
![]()
参考答案:
【答案】(1)
;(2)取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求.
【解析】
试题分析:(1)根据勾股定理可得:DB=
=5,因为BE=DF=
,所以可得AF=
BD=2.5,根据勾股定理可得:AE=
=
,所以AE+AF=
=
,故答案为:
;
(2)如图,
![]()
首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH=
=5,结合相似三角形选出格点K,根据
,得BP=
BH=
×5=4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到
,得DG=
DM=
×5=3,易证△DFG≌BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.
故答案为:取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一元二次方程(x﹣5)(2x﹣1)=3的根的判别式的值是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中 虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为 cm3.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其 中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

(1)当t=2秒时,求PQ的长;
(2)求出发时间为几秒时,△PQB是等腰三角形?
(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间. -
科目: 来源: 题型:
查看答案和解析>>【题目】函数y=x2+2x-3,当-2≤x≤2时,函数值y的取值范围是__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,抛物线y=(x+2)2﹣3与y轴的交点坐标是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.
(1)AE的长等于________;
(2)若点P在线段AC上,点Q在线段BC上,且满足AP = PQ = QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)________.

相关试题