【题目】如图,
中,
,
,
平分
,
于
,则下列结论:①
平分
,②
,③
平分
,④
,其中正确的有( )
![]()
A.1个B.2个C.3个D.4个
参考答案:
【答案】C
【解析】
由“AAS”可证△ACD≌△AED,可得CD=DE,AC=CE,∠CDA=∠ADE,可判断①④由等腰直角三角形的性质可判断②③.
解:AD平分∠BAC
∴∠CAD=∠BAD,且∠C=∠DEA=90°,AD=AD
∴△ACD≌△AED(AAS)
∴CD=DE,AC=CE,∠CDA=∠ADE
∴AD平分∠CDE,AB=AE+BE=AC+EB
∴①④正确
AC=BC,∠C=90°
∴∠CAB=∠B=45°,且DE⊥AB
∴∠B=∠BDE=45°
∴∠BAC=∠BDE,∠ADE=67.5
∠BDE
∴②正确,③错误
故选:C
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
分别与x轴、y轴交于
两点,与直线
交于点C(4,2).(1)点A坐标为( , ),B为( , );
(2)在线段
上有一点E,过点E作y轴的平行线交直线
于点F,设点E的横坐标为m,当m为何值时,四边形
是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得
四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】古代阿拉伯数学家泰比特·伊本·奎拉对勾股定理进行了推广研究:如图(图1中
为锐角,图2中
为直角,图3中
为钝角).
在△ABC的边BC上取
,
两点,使
,则
∽
∽
,
,
,进而可得
;(用
表示)若AB=4,AC=3,BC=6,则
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,函数
(x<0)与y=ax+b的图象交于点A(﹣1,n)和点B(﹣2,1).(1)求k,a,b的值;
(2)直线x=m与
(x<0)的图象交于点P,与y=﹣x+1的图象交于点Q,当∠PAQ>90°时,直接写出m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,现有一个均匀的转盘被平均分成6等份,分别标有数字2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字.

求:(1)转动转盘,转出的数字大于3的概率是多少?
(2)现有两张分别写有3和4的卡片,随机转动转盘,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.
①这三条线段能构成三角形的概率是 .
②这三条线段能构成等腰三角形的概率是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF
DE.(1)求证:DF是⊙O的切线;
(2)连接AF交DE于点M,若 AD
4,DE
5,求DM的长.
相关试题