【题目】如图,现有一个均匀的转盘被平均分成6等份,分别标有数字234567这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字.

求:(1)转动转盘,转出的数字大于3的概率是多少?

2)现有两张分别写有34的卡片,随机转动转盘,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.

①这三条线段能构成三角形的概率是 .

②这三条线段能构成等腰三角形的概率是 .


参考答案:

【答案】1;(2;②.

【解析】

(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,由概率公式可得;

(2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,由概率公式可得;

②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,由概率公式可得.

: (1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,

转出的数字大于3的概率是

(2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,

这三条线段能构成三角形的概率是

②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,

这三条线段能构成等腰三角形的概率是

关闭