【题目】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为56和32,则△EDF的面积为()
![]()
A.10B.11C.12D.不能确定
参考答案:
【答案】C
【解析】
过点D作DH⊥AC于H,根据角平分线上的性质定理可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.
如图,过点D作DH⊥AC于H,
![]()
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DH,
在Rt△DEF和Rt△DGH中,
![]()
∴Rt△DEF≌Rt△DGH(HL),
∴S△EDF=S△GDH,设面积为S,
在Rt△ADF和Rt△ADH中,
![]()
Rt△ADF≌Rt△ADH(HL),
∴S△ADF=S△ADH,
即32+S=56S,
解得S=12.
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣
x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面的文字后,解答问题:
有这样一道题目:“如图,E、D是△ABC中BC边上的两点,AD=AE, .求证△ABE≌△ACD.请根据你的理解,在题目中的空格内,把原题补充完整(添加一个适当的条件),并写出证明过程.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
ABC是等边三角形,点D是线段AC上的一动点,E在BC的延长线上,且BD=DE.(1)如图,若点D为线段AC的中点,求证:AD=CE;

(2)如图,若点D为线段AC上任意一点,求证:AD=CE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】
(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)


(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正
边形ABCD……X”,请你作出猜想:当∠AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,两个全等直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=8,DH=3,平移距离为4,则阴影部分(即四边形DOCF)的面积为___.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB,BC于点D和点E.

(1)若AB=10,则△CDE的周长.
(2)若∠ACB=120°,求∠DCE的度数.
相关试题