【题目】已知关于x的方程(1﹣2k)x2﹣2
x﹣1=0
(1)若此方程为一元一次方程,求k的值.
(2)若此方程为一元二次方程,且有实数根,试求k的取值范围.
参考答案:
【答案】(1) k=
;(2)﹣1≤k<
或
<k≤2.
【解析】试题分析:(1)因为方程为一元一次方程,所以二次项系数等于0且一次项系数不等于0,令二次项系数1-2k=0求出k的值即可;
(2)令△≥0,二次项系数不等于0,被开方式大于等于0进行解答即可.
试题解析:
(1)由(1﹣2k)x2﹣2
x﹣1=0是一元一次方程,
得1﹣2k=0,
解得k=
;
(2)由(1﹣2k)x2﹣2
x﹣1=0为一元二次方程,且有实数根,得
△=(2
)2﹣4(1﹣2k)×(﹣1)≥0,且1﹣2k≠0,k+1≥0,
4k+4+4(1﹣2k)≥0,
﹣4k≥﹣8,
k≤2,
即﹣1≤k<
或
<k≤2,
此方程为一元二次方程,且有实数根,k的取值范围﹣1≤k<
或
<k≤2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点
(1)求抛物线的解析式;
(2)求抛物线与x轴的交点坐标,与y轴交点坐标;
(3)画出这条抛物线;
(4)根据图象回答:①当x取什么值时,y>0,y<0?②当x取什么值时,y的值随x的增大而减小?
-
科目: 来源: 题型:
查看答案和解析>>【题目】2018年全国两会于3月5日至20日在北京召开,为了了解市民“获取两会新闻的最主要途径”,记者小李开展了一次抽样调查,根据调查结果绘制了如图所示尚不完整的统计图.根据图中信息解答下列问题:

(1)这次接受调查的市民总人数是 ;
(2)扇形统计图中,“电视”所对应的圆心角的度数是 ;
(3)请补全条形统计图;
(4)若该市约有700万人,请你估计其中将“电脑上网和手机上网”作为“获取新闻的最主要途径”的总人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,
连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理
∵AB=AD
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合
∵∠ADC=∠B=90°
∴∠FDG=180°
∴点F、D、G共线
根据 ,易证△AFG≌ ,进而得EF=BE+DF.
(2)联想拓展
如图2,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的数量关系,并写出推理过程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).

(1)请直接写出点A关于y轴对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:

文文:“过点A作BC的中垂线AD,垂足为D”;
彬彬:“作△ABC的角平分线AD”.
数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”
(1)请你简要说明文文的辅助线作法错在哪里;
(2)根据彬彬的辅助线作法,完成证明过程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】水利部确定每年的3月22日至28日为“中国水周”(1994年以前为7月1日至7日),从1991年起,我国还将每年5月的第二周作为城市节约用水宣传周.某社区为了进一步提高居民珍惜水、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每月的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图表:

请根据上面的统计图表,解答下列问题:
(1)在频数分布表中:m= ,n= ;
(2)根据题中数据补全频数直方图;
(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?
相关试题