【题目】“食品安全”受到全社会的广泛关注,我市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有_________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_________度;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;
扇形统计图 条形统计图
![]()
参考答案:
【答案】 60 90 (2) 300人
【解析】分析:(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
(2)由(1)可求得了解的人数,继而补全条形统计图;
(3)利用样本估计总体的方法,即可求得答案.
详解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);
∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:
×360°=90°;
故答案为:60,90;
(2)60﹣15﹣30﹣10=5;
补全条形统计图得:
![]()
(3)根据题意得:900×
=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某城镇在对一项工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲队工程款2万元,付乙队工程款1.5万元.现有三种施工方案:(
)由甲队单独完成这项工程,恰好如期完工;(
)由乙队单独完成这项工程,比规定工期多6天;(
)由甲乙两队
后,剩下的由乙队单独做,也正好能如期完工.小聪同学设规定工期为
天,依题意列出方程:
.(1)请将(
)中被墨水污染的部分补充出来:________;(2)你认为三种施工方案中,哪种方案既能如期完工,又节省工程款?说明你的理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下表:
序号
1
2
3
……
x x x x
x x x
y y y
x x
y y
x x x x
图形
y
x x x
y y y
x x
y y
x x x x
x x x
y y y
x x x x
我们把某格中字母和所得到的多项式称为“特征式多项式”。例如第1格的“特征式多项式”为4x+y。
(1)第3格的“特征式多项式”为________________;
(2)第4格的“特征式多项式”为________________;
(3)第n格的“特征式多项式”为________________;
(4)若第1格的 “特征式多项式”为10,第2格的“特征式多项式”为19,求x、y的值。
-
科目: 来源: 题型:
查看答案和解析>>【题目】拋物线
的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①
;②当x>-l时,y随x增大而减小;③a+b+c<0;④若方程
没有实数根,则m>2. 其中正确的结论有________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“完美数”。例如5是“完美数”,因为5=22+12,再如M=x2+2xy+2y2=(x+y)2 +y2(x、y是正整数),所以M也是“完美数”。
(1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;
(2)试判断(x2+9y2)(4y2+x2)(x、y是正整数)是否为“完美数”,并说明理由;
(3)已知S=x2+4y2+4x-12y+k(x、y是正整数,k是常数),要使S为“完美数”,试求出符合条件的一个k值,并说明理由。
-
科目: 来源: 题型:
查看答案和解析>>【题目】因式分解是数学解题的一种重要工具,掌握不同因式分解的方法对数学解题有着重要的意义.我们常见的因式分解方法有:提公因式法、公式法、分组分解法、十字相乘法等.在此,介绍一种方法叫“试根法”.例:
,当
时,整式的值为0,所以,多项式有因式
,设
,展开后可得
,所以
,根据上述引例,请你分解因式:(1)
;(2)
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,以AC为直径作
交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.(1)求证: EF与
相切;(2)若AE=6,
,求EB的长.
相关试题