【题目】如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形,E是BC的中点. ![]()
(1)求证:AE∥平面PCD;
(2)记平面PAB与平面PCD的交线为l,求二面角C﹣l﹣B的余弦值.
参考答案:
【答案】
(1)证明:∵∠ABC=∠BAD=90°,BC=2AD,E是BC的中点,
∴AD∥CE,且AD=CE,
∴四边形ADCE是平行四边形,∴AE∥CD,
∵AE平面PCD,CD平面PCD,
∴AE∥平面PCD
(2)解:连结DE、BD,设AE∩BD于O,连结PO,
则四边形ABED是正方形,∴AE⊥BD,
∵PD=PB=2,O是BD中点,∴PO⊥BD,
则PO=
=
=
,
又OA=
,PA=2,∴PO2+OA2=PA2,
∴△POA是直角三角形,∴PO⊥AO,
∵BD∩AE=O,∴PO⊥平面ABCD,
以O为原点,OE为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,
![]()
则P(0,0,
),A(﹣
),B(0,
,0),E(
),D(0,﹣
,0),
∴
=(﹣
),
=(0,
),
=(0,
),
=(2
,0,0),
设
=(x,y,z)是平面PAB的法向量,
则
,取x=1,得
,
设
=(a,b,c)是平面PCD的法向量,
则
,取b=1,得
=(0,1,﹣1),
cos<
>=
=0,
∴二面角C﹣l﹣B的余弦值为0.
【解析】(1)推导出四边形ADCE是平行四边形,从而AE∥CD,由此能证明AE∥平面PCD.(2)连结DE、BD,设AE∩BD于O,连结PO,推导出AE⊥BD,PO⊥BD,PO⊥AO,从而PO⊥平面ABCD,以O为原点,OE为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出二面角C﹣l﹣B的余弦值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F分别是AB,AC上的点,且
,(其中λ,μ∈(0,1)),且λ+4μ=1,若线段EF,BC的中点分别为M,N,则
的最小值为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,△ABC是等边三角形,在BC边上取点D,在边AC的延长线上取点E使DE=AD.
求证:BD=CE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,角A,B,C的对边分别为,且满足
.
(1)求角A的大小;
(2)若D为BC上一点,且
,求a. -
科目: 来源: 题型:
查看答案和解析>>【题目】据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制.

(Ⅰ)地产数据研究院研究发现,3月至7月的各月均价y(万元/平方米)与月份x之间具有较强的线性相关关系,试建立y关于x的回归方程(系数精确到0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;
(Ⅱ)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为X,求X的分布列和数学期望.
参考数据:
=25,
=5.36,
=0.64
回归方程
=
x+
中斜率和截距的最小二乘估计公式分别为:
=
,
=
﹣
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为P,与抛物线的交点为Q,且
.
(1)求抛物线的方程;
(2)如图所示,过F的直线l与抛物线相交于A,D两点,与圆x2+(y﹣1)2=1相交于B,C两点(A,B两点相邻),过A,D两点分别作我校的切线,两条切线相交于点M,求△ABM与△CDM的面积之积的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=axln(x+1)+x+1(x>﹣1,a∈R).
(1)若
,求函数f(x)的单调区间;
(2)当x≥0时,不等式f(x)≤ex恒成立,求实数a的取值范围.
相关试题