【题目】如图所示:
![]()
(1)折叠数轴,若1表示的点与-1表示的点重合,则-2表示的点与数 表示的点重合;
(2)折叠数轴,若-1表示的点与5表示的点重合,则4表示的点与 表示的点重合;
(3)已知数轴上点A表示的数是-1,点B表示的数是2,若点A以每秒1个单位长度的速度在数轴上移动,点B以每秒2个单位长度的速度在数轴上移动,且点A始终在点B的左侧,求经过几秒时,A、B两点的距离为6个单位长度.
参考答案:
【答案】(1)2;(2)0;(3)1秒或3秒
【解析】
(1)根据题意得出-2对应的点即可;
(2)根据-1与5重合,得到2为对称轴,求出4对应的点即可;
(3)根据题意,分点A向左运动、点B向右运动,点A、点B都向右运动两种情况讨论即可得.
(1)根据题意得:原点为对称轴,即-2对应的点为2,
故答案为:2;
(2)根据题意得:2为对称轴,则表示4的点与表示0的点重合,
故答案为:0;
(3)因为点A表示的数是-1,点B表示的数是2,所以A、B两点的距离是3个单位长度,
因为点A 始终在点B的左侧,
所以当点A和点B都向右同时移动时(6-3)÷(2-1)=3(秒),
当点A向左、点B向右同时移动时(6-3)÷(1+2)=1(秒),
答:经过1秒或3秒时,A、B两点的距离为6个单位长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】沿河岸有A,B,C三个港口,甲乙两船同时分别从AB港口出发,匀速驶向C港,最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.考察下列结论:
①乙船的速度是25km/h;②从A港到C港全程为120km;③甲船比乙船早1.5小时到达终点;④若设图中两者相遇的交点为P点,P点的坐标为(
,
);⑤如果两船相距小于10km能够相互望见,那么甲、乙两船可以相互望见时,x的取值范围是
<x<2.其中正确的结论有_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△AOB,△COD是等腰直角三角形,点D在AB上,
(1)求证:△AOC≌△BOD;
(2)若AD=3,BD=1,求CD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=
在同一平面直角坐标系中的图象大致是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.
(1)求y与x的关系式;
(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?
(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米且垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )

A.(6+
)米
B.12米
C.(4﹣2
)米
D.10米 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=
x+b过点P.(1)求点P坐标和b的值;
(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.
①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;
②求出t为多少时,△APQ的面积小于3;
③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.

相关试题