【题目】已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=
在同一平面直角坐标系中的图象大致是( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】C
【解析】解:∵二次函数图象开口向下,
∴a<0,
∵对称轴x=﹣
<0,
∴b<0,
∵二次函数图象经过坐标原点,
∴c=0,
∴一次函数y=bx+c过第二四象限且经过原点,反比例函数y=
位于第二四象限,
纵观各选项,只有C选项符合.
故选C.
【考点精析】关于本题考查的一次函数的图象和性质和反比例函数的图象,需要了解一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远;反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的分式方程
无解,则m的值为( )
A.﹣1.5
B.1
C.﹣1.5或2
D.﹣0.5或﹣1.5 -
科目: 来源: 题型:
查看答案和解析>>【题目】沿河岸有A,B,C三个港口,甲乙两船同时分别从AB港口出发,匀速驶向C港,最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.考察下列结论:
①乙船的速度是25km/h;②从A港到C港全程为120km;③甲船比乙船早1.5小时到达终点;④若设图中两者相遇的交点为P点,P点的坐标为(
,
);⑤如果两船相距小于10km能够相互望见,那么甲、乙两船可以相互望见时,x的取值范围是
<x<2.其中正确的结论有_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△AOB,△COD是等腰直角三角形,点D在AB上,
(1)求证:△AOC≌△BOD;
(2)若AD=3,BD=1,求CD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示:

(1)折叠数轴,若1表示的点与-1表示的点重合,则-2表示的点与数 表示的点重合;
(2)折叠数轴,若-1表示的点与5表示的点重合,则4表示的点与 表示的点重合;
(3)已知数轴上点A表示的数是-1,点B表示的数是2,若点A以每秒1个单位长度的速度在数轴上移动,点B以每秒2个单位长度的速度在数轴上移动,且点A始终在点B的左侧,求经过几秒时,A、B两点的距离为6个单位长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.
(1)求y与x的关系式;
(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?
(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米且垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )

A.(6+
)米
B.12米
C.(4﹣2
)米
D.10米
相关试题