【题目】﹣125的立方根是 .
参考答案:
【答案】﹣5
【解析】解:∵﹣5的立方等于﹣125,
∴﹣125的立方根是﹣5.
所以答案是﹣5.
【考点精析】根据题目的已知条件,利用立方根的相关知识可以得到问题的答案,需要掌握如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根);一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一元二次方程x2﹣8x﹣1=0配方后可变形为( )
A.(x+4)2=17
B.(x+4)2=15
C.(x﹣4)2=17
D.(x﹣4)2=15 -
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形的两边长为4,9.则它的周长为___________
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
为
上的一点,按下列要求进行作图.
(1)作
的平分线
.
(2)在
上取一点
,使得
.
(3)爱动脑筋的小刚经过仔细观察后,进行如下操作:在边
上取一点
,使得
,这时他发现
与
之间存在一定的数量关系,请写出
与
的数量关系,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线
(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线
与抛物线的另一交点为D,且点D的横坐标为﹣5.
(1)求抛物线的函数表达式;
(2)P为直线BD下方的抛物线上的一点,连接PD、PB, 求△PBD面积的最大值.
(3)设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例.
原题:如图①,点
分别在正方形
的边
上,
,连接
,则
,试说明理由.
(1)思路梳理
因为
,所以把
绕点
逆时针旋转90°至
,可使
与
重合.因为
,所以
,点
共线.
根据 , 易证
, 得
.请证明.
(2)类比引申
如图②,四边形
中,
,
,点
分别在边
上,
.若
都不是直角,则当
与
满足等量关系时,
仍然成立,请证明.
(3)联想拓展
如图③,在
中,
,点
均在边
上,且
.猜想
应满足的等量关系,并写出证明过程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(-4,0),B(0,3),动点P从点O出发,沿x轴负方向以每秒1个单位的速度运动,同时动点Q从点B出发,沿射线BO方向以每秒2个单位的速度运动,过点P作PC⊥AB于点C,连接PQ,CQ,以PQ,CQ为邻边构造平行四边形PQCD,设点P运动的时间为t秒.
(1)当点Q在线段OB上时,用含t的代数式表示PC,AC的长;
(2)在运动过程中.
①当点D落在x轴上时,求出满足条件的t的值;
②若点D落在△ABO内部(不包括边界)时,直接写出t的取值范围;
(3)作点Q关于x轴的对称点Q′,连接CQ′,在运动过程中,是否存在某时刻使过A,P,C三点的圆与△CQQ′三边中的一条边相切?若存在,请求出t的值;若不存在,请说明理由.



相关试题