【题目】计算或解方程
(1)﹣14+(﹣5)2×(﹣
)+|0.8﹣1|
(2)﹣1.53×0.75+1.53×
+
×1.53
(3)![]()
(4)
.
参考答案:
【答案】(1)-
(2)1.53(3)-7(4)x=﹣7.9
【解析】
(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;
(2)原式先计算开方,再应用乘法分配律计算即可;
(3)原式先计算乘方运算,再计算乘除运算,最后分数化简即可;
(4)原方程去分母、去括号、移项、合并同类项、系数化1即可解答.
(1)原式=﹣1﹣
+0.2=﹣
﹣
=﹣
;
(2)原式=1.53×(﹣0.75+
+
)=1.53;
(3)原式=
=﹣7;
(4)方程整理得:
﹣
=1,
去分母得:70x+70﹣60x+30=21,
移项合并得:10x=﹣79,
解得:x=﹣7.9.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).
(1)直接写出点E的坐标;
(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:
①当t等于多少秒时,点P的横坐标与纵坐标互为相反数;
②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);
③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,用含x,y的式子表示z.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(感知)如图①,AB∥CD,点E在直线AB与CD之间,连结AE、BE,试说明∠BEE+∠DCE=∠AEC.下面给出了这道题的解题过程,请完成下面的解题过程,并填空(理由或数学式):
解:如图①,过点E作EF∥AB
∴∠BAE=∠1( )
∵AB∥CD( )
∴CD∥EF( )
∴∠2=∠DCE
∴∠BAE+∠DCE=∠1+∠2( )
∴∠BAE+∠DCE=∠AEC
(探究)当点E在如图②的位置时,其他条件不变,试说明∠AEC+∠FGC+∠DCE=360°;
(应用)点E、F、G在直线AB与CD之间,连结AE、EF、FG和CG,其他条件不变,如图③.若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG= °.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点
的坐标为
,以 A 为顶点的
的两边始终与
轴交于
、
两点(
在
左面),且
.(1)如图,连接
,当
时,试说明:
.
(2)过点
作
轴,垂足为
,当
时,将
沿
所在直线翻折,翻折后边
交
轴于点
,求点
的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.有以下结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( ).

A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,三角形ABC的顶点A、B、C的坐标分别为(0,3)、(﹣2,1)、(﹣1,1),如果将三角形ABC先向右平移2个单位长度,再向下平移2个单位长度,会得到三角形A′B′C′,点A'、B′、C′分别为点A、B、C移动后的对应点.
(1)请直接写出点A′、B'、C′的坐标;
(2)请在图中画出三角形A′B′C′,并直接写出三角形A′B′C′的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.
阅读下面的解答过程,并填空(理由或数学式)
解:∵BE∥GF(已知)
∴∠2=∠3( )
∵∠1=∠3( )
∴∠1=( )( )
∴DE∥( )( )
∴∠EDB+∠DBC=180°( )
∴∠EDB=180°﹣∠DBC(等式性质)
∵∠DBC=( )(已知)
∴∠EDB=180°﹣70°=110°

相关试题