【题目】在△ABC中,AB=AC,DE∥BC.
(1)试问△ADE是否是等腰三角形,说明理由;
(2)若M为DE上的点,且BM平分∠ABC,CM平分∠ACB,若△ADE的周长为20,BC=8.求△ABC的周长.
![]()
参考答案:
【答案】(1)是等腰三角形,证明见解析;(2)28
【解析】试题分析:(1)由DE∥BC,可知△ADE∽△ABC,根据相似三角形性质即可求得结论;
(2)由于DE∥BC,BM平分∠ABC,CM平分∠ACB,易证BD=DM,ME=CE,根据△ADE的周长为20,BC=8,即可求出△ABC的周长.
解:(1)∵DE∥BC,
∴△ADE∽△ABC.
∴
.
∵AB=AC,
∴AD=AE.
∴△ADE是等腰三角形.
(2)∵DE∥BC,BM平分∠ABC,CM平分∠ACB,
∴∠MBC=∠DMB=∠DBM,∠MCB=∠MCE=∠EMC.
∴BD=DM,ME=CE.
∵△ADE的周长=AD+AE+DM+ME=20,
∴AD+AE+BD+CE=20.
∴△ABC的周长=(AD+AE+BD+CE)+BC=20+8=28.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲班与乙班共有学生95人,若设甲班有x人,现从甲班调1人到乙班,甲班人数是乙班人数的90%,依题意有方程__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点A',则点A'的坐标是( )
A.(-1,1)
B.(-1,-2)
C.(-1,2)
D.(1,2) -
科目: 来源: 题型:
查看答案和解析>>【题目】甲乙二人在环形跑道上同时同地出发,同向跑步,甲的速度为7米/秒,乙的速度为6.5米/秒,若跑道一周的长为400米,设经过x秒后甲乙两人第一次相遇,则列方程为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是( )
A.(2,5)
B.(-8,5)
C.(-8,-1)
D.(2,-1) -
科目: 来源: 题型:
查看答案和解析>>【题目】若代数式x2﹣6x+b可化为(x+a)2﹣5,则a+b的值为____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】x为何值时,两个代数式x2+1,4x+1的值相等?
相关试题