【题目】如图,淇淇的爸爸去参加一个聚会,淇淇坐在汽车上用所学知识绘制了一张反映汽车速度与时间的关系图,第二天,淇淇拿着这张图给同学看,并向同学提出如下问题,你能回答吗?
(1)在上述变化过程中,自变量是什么?因变量是什么?
(2)汽车从出发到最后停止共经过了多长时间?它的最高时速是多少?
(3)汽车在哪段时间保持匀速行驶?速度是多少?
(4)用语言大致描述这辆汽车的行驶情况.
![]()
参考答案:
【答案】(1)自变量是时间,因变量是速度(2)汽车从出发到最后停止共经过了60分钟时间,最高时速是85千米/时(3)汽车在出发后35分钟到50分钟之间保持匀速,速度是85千米/时(4)汽车先加速行驶至第10分钟,然后减速行驶至第25分钟,接着停下5分钟,再加速行驶至第35分钟,然后匀速行驶至第50分钟,再减速行驶直至第60分钟停止
【解析】分析:(1)主动变化的量是自变量,被动变化的量是因变量;(2)观察横轴上速度最后为0时的时间,速度是最大值即是函数图象最高时的函数值;(3)函数图象平行于横轴时汽车在匀速行驶;(4)根据函数图象,从0开始到60分钟结束.
详解:(1)自变量是时间,因变量是速度;
(2)根据速度与时间图象的横坐标可知:汽车从出发到最后停止共经过了60分钟时间,最高时速是85千米/时;
(3)汽车在出发后35分钟到50分钟之间保持匀速,速度是85千米/时.
(4)汽车先加速行驶至第10分钟,然后减速行驶至第25分钟,接着停下5分钟,再加速行驶至第35分钟,然后匀速行驶至第50分钟,再减速行驶直至第60分钟停止.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列计算正确的是( )
A.(x+y)2=x2+y2B.(﹣x+y)2=x2+2xy+y2
C.(x﹣2y)(x+2y)=x2﹣2y2D.(x﹣1)(﹣x﹣1)=1﹣x2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.

(1)求证:△BCD是等腰三角形;
(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D,点P在MN上(P点与A、B、M三点不重合).
(1)如果点P在A、B两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;
(2)如果点P在A、B两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).

-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校组织学生到富阳春游,需要乘船到达目的地,有大小两种船,705班共有学生51人,如果租用大船4艘,小船1艘,则有3位同学没有座位;如果租用大船3艘,小船3艘,则有3个座位空余。
(1)问大小船每艘各坐几人?
(2)如果大船收费标准为30元/艘,小船收费标准为25元/艘,请直接写出你的设计方案使得租船费用最低,并计算最低费用。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直径坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C

(1)直接写出抛物线的函数解析式;
(2)以OC为半径的⊙O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;
(3)将抛物线向上平移
个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x,y的方程组

(1)请直接写出方程
的所有正整数解(2)若方程组的解满足x+y=0,求m的值
(3)无论实数m取何值,方程x-2y+mx+5=0总有一个固定的解,请直接写出这个解?
相关试题