【题目】如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的.连接BE、CF相交于点D.
(1)求证:BE=CF.
(2)当四边形ACDE为菱形时,求BD的长.
![]()
参考答案:
【答案】(1)证明见试题解析;(2)
.
【解析】试题分析:(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根据旋转的定义,△AEB可由△AFC绕点A按顺时针方向旋转得到,然后根据旋转的性质得到BE=CD;
(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=
AC=
,于是利用BD=BE﹣DE求解.
试题解析:(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,∵AB=AC,∴AE=AF,∴△AEB可由△AFC绕点A按顺时针方向旋转得到,∴BE=CD;
(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=
AC=
,∴BD=BE﹣DE=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把下列各式因式分解:
(1)x﹣xy2
(2)﹣6x2+12x﹣6
-
科目: 来源: 题型:
查看答案和解析>>【题目】过直线上或直线外一点,_________与已知直线垂直.
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC三个顶点A、B、C的坐标分别为A(2,﹣1)、B(1,﹣3)、C(4,﹣2).

(1)在直角坐标系中画出△ABC;
(2)把△ABC向左平移4个单位,再向上平移5个单位,恰好得到三角形△A1B1C1,试写出△A1B1C1三个顶点的坐标,并在直角坐标系中描出这些点;
(3)求出△A1B1C1的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】□ABCD中,∠A=75°,则∠B=______度,∠C=______度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A.4a2-2a2=2
B.a7÷a3=a4
C.5a2a4=5a8
D.(a2b3)2=a4b5 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A(3,1),则点A关于y轴的对称点A1的坐标是______.
相关试题