【题目】(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD
BC=AP
BP.
![]()
(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用:请利用(1)(2)获得的经验解决问题:
如图3,在△ABD中,AB=12,AD=BD=10.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.
参考答案:
【答案】(1)证明见解析;(2)结果成立,理由见解析;(3)t的值为2秒或10秒.
【解析】
试题分析:(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;
(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;
(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=6,根据勾股定理可得DE=8,由题可得DC=DE=8,则有BC=10-8=2.易证∠DPC=∠A=∠B.根据AD
BC=AP
BP,就可求出t的值.
试题解析:(1)如图1,
∵∠DPC=∠A=∠B=90°,
∴∠ADP+∠APD=90°,
∠BPC+∠APD=90°,
∴∠APD=∠BPC,
∴△ADP∽△BPC,
∴
,
∴AD
BC=AP
BP;
(2)结论AD
BC=AP
BP仍成立;
证明:如图2,∵∠BPD=∠DPC+∠BPC,
又∵∠BPD=∠A+∠APD,
∴∠DPC+∠BPC=∠A+∠APD,
∵∠DPC=∠A=θ,
∴∠BPC=∠APD,
又∵∠A=∠B=θ,
∴△ADP∽△BPC,
∴
,
∴AD
BC=AP
BP;
(3)如下图,过点D作DE⊥AB于点E,
![]()
∵AD=BD=10,AB=12,
∴AE=BE=6
∴DE=
=8,
∵以D为圆心,以DC为半径的圆与AB相切,
∴DC=DE=8,
∴BC=10-8=2,
∵AD=BD,
∴∠A=∠B,
又∵∠DPC=∠A,
∴∠DPC=∠A=∠B,
由(1)(2)的经验得ADBC=APBP,
又∵AP=t,BP=12-t,
∴t(12-t)=10×2,
∴t=2或t=10,
∴t的值为2秒或10秒.
-
科目: 来源: 题型:
查看答案和解析>>【题目】命题“对顶角相等”的逆命题为________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个三角形的两条边长度分别为1和4,则第三边a可取_______.(填一个满足条件的数)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△ADE都是等边三角形,BD与CE相交于O.
(1)求证:BD=CE;
(2)OA平分∠BOE吗?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某班开展1分钟仰卧起坐比赛活动,5名同学的成绩如下(单位:个):37、38、40、40、42.这组数据的众数是( )
A. 37 B. 38 C. 40 D. 42
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角三角形中,最小的角是30度,最短边长是5厘米,则斜边长为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中:①座位是4排2号;②某城市在东经118°,北纬29°;③某校在昌荣大道229号;④甲地距乙地2 km,其中能确定位置的有________个.
相关试题