【题目】如图,抛物线经过A(﹣1,0),B(5,0),C(0,
)三点.![]()
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:设抛物线的解析式为y=ax2+bx+c(a≠0),
∵A(﹣1,0),B(5,0),C(0,
)三点在抛物线上,
∴
,
解得
.
∴抛物线的解析式为:y=
x2﹣2x﹣ ![]()
(2)
解:∵抛物线的解析式为:y=
x2﹣2x﹣
,
∴其对称轴为直线x=﹣
=﹣
=2,
连接BC,如图1所示,
![]()
∵B(5,0),C(0,﹣
),
∴设直线BC的解析式为y=kx+b(k≠0),
∴
,
解得
,
∴直线BC的解析式为y=
x﹣
,
当x=2时,y=1﹣
=﹣
,
∴P(2,﹣
)
(3)
解:存在.
如图2所示,
![]()
①当点N在x轴下方时,
∵抛物线的对称轴为直线x=2,C(0,﹣
),
∴N1(4,﹣
);
②当点N在x轴上方时,
如图,过点N2作N2D⊥x轴于点D,
在△AN2D与△M2CO中,
![]()
∴△AN2D≌△M2CO(ASA),
∴N2D=OC=
,即N2点的纵坐标为
.
∴
x2﹣2x﹣
=
,
解得x=2+
或x=2﹣
,
∴N2(2+
,
),N3(2﹣
,
).
综上所述,符合条件的点N的坐标为(4,﹣
),(2+
,
)或(2﹣
,
).
【解析】(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,-
)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.

(1)求证:∠ADP=∠DEC;
(2)求y关于x的函数解析式,并直接写出自变量x的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.

(1)填空:∠BAD与∠ACB的数量关系为;
(2)求
的值;
(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=
,求PC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,
)
(1)若此抛物线经过点B(2,﹣
),且与x轴相交于点E,F.
①填空:b=(用含a的代数式表示);
(2)若a=
,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( )

A.∠2=35°
B.∠2=45°
C.∠2=55°
D.∠2=125° -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①
=
;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( ) 
A.①②③④
B.①④
C.②③④
D.①②③ -
科目: 来源: 题型:
查看答案和解析>>【题目】在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=
BC,则△ABC的顶角的度数为 .
相关试题