【题目】如图,△ABC中,AB=AC,点D为AC上一点,且BD=BC.将△BCD沿直线BD折叠后,点C落在AB上的点E处,若AE=DE,则∠A的度数为 . ![]()
参考答案:
【答案】36°
【解析】解:设∠A=x°,
∵AE=DE,
∴∠ADE=∠A=x°,
∴∠BEC=∠A+∠ADE=2x°,
由折叠的性质可得:∠C=∠BEC=2x°,
∵BD=BC,
∴∠BDC=∠C=2x°,
∴∠ABD=∠BDC﹣∠A=x°,
∴∠CBD=∠ABD=x°,
在△BCD中,∠C+∠CBD+∠BDC=180°,
∴x+2x+2x=180,
解得:x=36,
∴∠A=36°.
故答案为:36°.
设∠A=x°,由AE=DE,根据等腰三角形的性质,可求得∠ADE=x°,然后由三角形的外角的性质,求得∠AED=2x°,再利用折叠的性质与等腰三角形的性质,即可得∠C=∠BDC=2x°,∠CBD=x°,然后由三角形内角和定理,求得方程x+2x+2x=180,继而求得答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将一元二次方程4x2=-2x+7化为一般形式,其各项系数的和为__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设m,n是一元二次方程x2+2x-7=0的两个根,则m2+n2=__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知多项式(3﹣b)x5+xa+x﹣6是关于x的二次三项式,求a2﹣b2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】本学期初,我市教育部门对某中学从学生的品德、身心、学习、创新、国际、审美、信息、生活八个方面进行了综合评价,评价小组从八年级学生中选取部分学生针对“信息素养”进行测试,并将测试结果绘制成如下统计图(如图).根据图中信息,解答下列问题:

(1)本次选取参加测试的学生人数是;
(2)学生“信息素养”得分的中位数是;
(3)若把每组中各个分数用这组数据的中间值代替(如30﹣40分的中间值为35分),则参加测试的学生的平均分为分. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.

(1)求证:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,
AB是圆片的直径.(注:结果保留π )
(1)把圆片沿数轴向右滚动半周,点B到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;
(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3
①第次滚动后,A点距离原点最远;
②当圆片结束运动时,此时点A所表示的数是 .
相关试题