【题目】在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF。
(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);
(2)若E是线段AC或AC延长线上的任意一点,其它条件不变, 如图2、图3,线段BE、EF有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明。
![]()
参考答案:
【答案】(2)BE=EF,证明见解析
【解析】解:(2)图2:BE=EF。图3。
图2证明如下:过点E作EG∥BC,交AB于点G,
![]()
∵四边形ABCD为菱形,∴AB=BC。
又∵∠ABC=60°,∴△ABC是等边三角形。
∴AB=AC,∠ACB=60°。
又∵EG∥BC,∴∠AGE=∠ABC=60°。
又∵∠BAC=60°,∴△AGE是等边三角形。∴AG=AE。∴BG=CE。
又∵CF=AE,∴GE=CF。
又∵∠BGE=∠ECF=120°,∴△BGE≌△ECF(SAS)。∴BE=EF。
(1)根据菱形的性质结合∠ABC=60°可得△ABC是等边三角形,再根据等腰三角形三线合一的性质可得∠CBE=
∠ABC=30°,AE=CE,所以CE=CF,然后等边对等角的性质可得∠F=∠CEF,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠F=30°,从而得到∠CBE=∠F,根据等角对等边的性质即可证明。
(2)图2,过点E作EG∥BC,交AB于点G,
![]()
根据菱形的性质结合∠ABC=60°可得△ABC是等边三角形,根据等边三角形的性质得到AB=AC,∠ACB=60°,再求出△AGE是等边三角形,根据等边三角形的性质得到AG=AE,从而可以求出BG=CE,再根据等角的补角相等求出∠BGE=∠ECF=120°,然后利用“边角边”证明△BGE和△ECF 全等,根据全等三角形对应边相等即可得证。
图3,证明思路与方法与图2完全相同, 证明如下:
过点E作EG∥BC交AB延长线于点G,
![]()
∵四边形ABCD为菱形,∴AB=BC。
又∵∠ABC=60°,∴△ABC是等边三角形。
∴AB=AC∠ACB=60°。
又∵EG∥BC,∴∠AGE=∠ABC=60°。
又∵∠BAC=60°,∴△AGE是等边三角形。∴AG=AE。∴BG=CE。
又∵CF=AE,∴GE=CF。
又∵∠BGE=∠ECF=60°,∴△BGE≌△ECF(SAS)。∴BE=EF。
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列调查中,最适合采用普查方式进行的是( )
A.对深圳市居民日平均用水量的调查
B.对一批LED节能灯使用寿命的调查
C.对央视“新闻60分”栏目收视率的调查
D.对某中学教师的身体健康状况的调查 -
科目: 来源: 题型:
查看答案和解析>>【题目】若长方形面积是2a2﹣2ab+6a,一边长为2a,则这个长方形的周长是( )
A. 6a﹣2b+6B. 2a﹣2b+6C. 6a﹣2bD. 3a﹣b+3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=
:3;⑤S△EPM=
S梯形ABCD , 正确的个数有( )
A. 5个 B. 4个 C. 3个 D. 2个
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形一腰长为5,一边上的高为3,则底边长为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:
(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1;
(2)写出A1、C1的坐标;
(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1,求线段B1C1旋转过程中扫过的面积(结果保留π).

-
科目: 来源: 题型:
查看答案和解析>>【题目】三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一:
(1)请将表一和图一中的空缺部分补充完整.
(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.
(3)若每票计1分,系里将笔试、口试、得票三项测试得分按
的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.
相关试题