【题目】如图平面直角坐标系中,已知三点 A(0,7),B(8,1),C(x,0)且 0<x <8.
(1)求线段 AB 的长;
(2)请用含 x 的代数式表示 AC+BC 的值;
(3)求 AC+BC 的最小值.
![]()
参考答案:
【答案】(1)AB=10;(2)
+
;(3)AC+BC最小值为8
.
【解析】
(1)根据两点间的距离公式可求线段AB的长;
(2)根据两点间的距离公式可求线段AC,BC的值,再相加即可求解;
(3)作B点关于x轴对称点F点,连接AF,与x轴相交于点C.此时AC+BC最短.根据两点间的距离公式即可求解.
(1)
;
(2)AC+BC![]()
;
(3)如图,作B点关于x轴对称点F点,连接AF,与x轴相交于点C.此时AC+BC最短.
∵B(8,1),∴F(8,-1),∴AC+BC=AC+CF=AF=
.
即AC+BC最小值为8
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】Rt△ABC 中,∠BAC=90°,AB=AC=2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答:
(1)每千克茶叶应降价多少元?
(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,CD是边AB上的高,且
.(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)(操作发现)
如图 1,在边长为 1 个单位长度的小正方形组成的网格中,ABC 的三个顶点均在格点上.现将ABC 绕点 A 按顺时针方向旋转 90°,点 B 的对应点为 B′,点 C 的对应点为 C′, 连接 BB′,如图所示则∠AB′B= .
(2)(解决问题)
如图 2,在等边ABC 内有一点 P,且 PA=2,PB=
,PC=1,如果将△BPC 绕点 B 顺时针旋转 60°得出△ABP′,求∠BPC 的度数和 PP′的长;(3)(灵活运用)
如图 3,将(2)题中“在等边ABC 内有一点 P 改为“在等腰直角三角形 ABC 内有一点P”,且 BA=BC,PA=6,BP=4,PC=2,求∠BPC 的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,已知A(a,b),B(2,2),且|a-b+8|+
=0.(1)求点A的坐标;
(2)过点A作AC⊥x轴于点C,连接BC,AB,延长AB交x轴于点D,设AB交y轴于点E,那么OD与OE是否相等?请说明理由.
(3)在x轴上是否存在点P,使S△OBP=S△BCD?若存在,请求出P点坐标,若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:
村庄
清理养鱼网箱人数/人
清理捕鱼网箱人数/人
总支出/元
A
15
9
57000
B
10
16
68000
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
相关试题