【题目】数学课上,李老师出示了如下框中的题目.
![]()
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况探索结论
当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE__________DB(填“>”,“<”或“=”).
(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE__________DB(填“>”,“<”或“=”).理由如下:
如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长.
![]()
参考答案:
【答案】(1)=;(2)=,证明见解析;(3)3或1.
【解析】
试题分析:本题主要考查全等三角形的判定和性质及等边三角形的性质和判定,利用全等得到BD=EF,再找EF和AE的关系是解题的关键.
(1)当E为中点时,过E作EF∥BC交AC于点F,则可证明△BDE≌△FEC,可得到AE=DB;
(2)类似(1)过E作EF∥BC交AC于点F,可利用AAS证明△BDE≌△FEC,可得BD=EF,再证明△AEF是等边三角形,可得到AE=EF,可得AE=DB;
(3)分点E在AB上和在BA的延长线上,类似(2)证得全等,再利用平行得到.
试题解析:
(1)答案为:=.
(2)答案为:=.
在等边△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,
∵EF∥BC,
∴∠AEF=∠ABC,∠AFE=∠ACB,
∴∠AEF=∠AFE=∠BAC=60°,
∴AE=AF=EF,
∴AB﹣AE=AC﹣AF,
即BE=CF,
∵∠ABC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,
∵ED=EC,
∴∠EDB=∠ECB,
∵∠EBC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,
∴∠BED=∠FCE,
在△DBE和△EFC中,
,
∴△DBE≌△EFC(SAS),
∴DB=EF,
∴AE=BD.
(3)解:分为四种情况:
如图1:
∵AB=AC=1,AE=2,
∴B是AE的中点,
∵△ABC是等边三角形,
∴AB=AC=BC=1,△ACE是直角三角形(根据直角三角形斜边的中线等于斜边的一半),
∴∠ACE=90°,∠AEC=30°,
∴∠D=∠ECB=∠BEC=30°,∠DBE=∠ABC=60°,
∴∠DEB=180°﹣30°﹣60°=90°,
即△DEB是直角三角形.
∴BD=2BE=2(30°所对的直角边等于斜边的一半),
即CD=1+2=3.
如图2,
过A作AN⊥BC于N,过E作EM⊥CD于M,
∵等边三角形ABC,EC=ED,
∴BN=CN=
BC=
,CM=MD=
CD,AN∥EM,
∴△BAN∽△BEM,
∴
=
,
∵△ABC边长是1,AE=2,
∴
=
,
∴MN=1,
∴CM=MN﹣CN=1﹣
=
,
∴CD=2CM=1;
如图3,∵∠ECD>∠EBC(∠EBC=120°),而∠ECD不能大于120°,否则△EDC不符合三角形内角和定理,
∴此时不存在EC=ED;
如图4,
∵∠EDC<∠ABC,∠ECB>∠ACB,
又∵∠ABC=∠ACB=60°,
∴∠ECD>∠EDC,
即此时ED≠EC,
∴此时情况不存在,
答:CD的长是3或1.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】一位同学做一道题:“已知两个多项式A、B,计算2A﹣B”.他误将“2A﹣B”看成“A﹣2B”,求得的结果5x2﹣2x+4.已知B=2x2+3x﹣7,求2A﹣B的正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】旋转作图的步骤和方法:
(1)确定旋转中心,及;
(2)作出图形关键点经过旋转后的;
(3)按一定的顺序连接 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )
A.0 B.1 C.2 D.3

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知,等腰Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,连结AE、BF.则AE与BF是什么关系?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:x2﹣16= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程ax2+x+a2﹣2a=0的一个根是x=0,则系数a=_____.
相关试题