【题目】如图,从下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )![]()
A.1
B.2
C.3
D.4
参考答案:
【答案】B
【解析】当①②③为条件,④为结论时: ∵∠A′CA=∠B′CB, ∴∠A′CB′=∠ACB, ∵BC=B′C,AC=A′C, ∴△A′CB′≌△ACB, ∴AB=A′B′, 当①②④为条件,③为结论时: ∵BC=B′C,AC=A′C,AB=A′B′, ∴△A′CB′≌△ACB, ∴∠A′CB′=∠ACB, ∴∠A′CA=∠B′CB. 故答案为:B.
当①②③为条件,④为结论时 ,根据SAS判断出△A′CB′≌△ACB ,根据全等三角形的性质得出AB=A′B′;当①②④为条件,③为结论时:由SSS判断出△A′CB′≌△ACB,根据全等三角形的性质得出∠A′CB′=∠ACB, 从而得出∠A′CA=∠B′CB.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.

(1)如图1,若CD=CB,求证:CD是⊙O的切线;
(2)如图2,若F点在OB上,且CD⊥DF,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.
(1)写出y与x中间的函数关系式和自变量
的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在x轴上有点P(a,0)(其中a>2),过点P作x斜的蓬线,分别交函数
和
的图象于点C、D。

(1)求点A的坐标
(2)若OB=CD,求a的值
(3)在(2)条件下若以0D线段为边,作正方形0DEF,求直线EF的表达式。 -
科目: 来源: 题型:
查看答案和解析>>【题目】类比学习:一动点沿着数轴先向右平移3个单位长度,再向左平移2个单位长度,相当于向右平移1个单位长度.用实数加法表示为3+(-2)=1.若坐标平面上的点有如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位长度),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位长度),则把有序数对{a,b}叫做这一平移的“平移量”,“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.
解决问题:
(1)计算:{3,1}+{1,2},{1,2}+{3,1}.
(2)动点P从坐标原点O出发,先按照“平移量”{3,1}平移到点A,再按照“平移量”{1,2}平移到点B;若先把动点P按照“平移量”{1,2}平移到点C,再按照“平移量”{3,1}平移,最后的位置还是点B吗?在图①中画出四边形OABC.
(3)如图②所示,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.

-
科目: 来源: 题型:
查看答案和解析>>【题目】24表示( )
A.2×2×2×2B.2×4 C.4×4 D.2+2+2+2
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.

请根据以上信息,回答下列问题:
(1)杨老师采用的调查方式是 (填“普查”或“抽样调查”);
(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?
(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
相关试题