【题目】如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.
![]()
(1)求证:CG是⊙O的切线.
(2)求证:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的长.
参考答案:
【答案】(1)(2)证明见解析(3)2![]()
【解析】
试题分析:(1)连结OC,由C是劣弧AE的中点,根据垂径定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根据切线的判定定理即可得到结论;
(2)连结AC、BC,根据圆周角定理得∠ACB=90°,∠B=∠1,而CD⊥AB,则∠CDB=90°,根据等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF;
(3)在Rt△ADF中,由于∠DAF=30°,FA=FC=2,根据含30度的直角三角形三边的关系得到DF=1,AD=
,再由AF∥CG,根据平行线分线段成比例得到DA:AG=DF:CF
然后把DF=1,AD=
,CF=2代入计算即可.
(1)证明:连结OC,如图,
∵C是劣弧AE的中点,
∴OC⊥AE,
∵CG∥AE,
∴CG⊥OC,
∴CG是⊙O的切线;
(2)证明:连结AC、BC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠2+∠BCD=90°,
而CD⊥AB,
∴∠B+∠BCD=90°,
∴∠B=∠2,
∵C是劣弧AE的中点,
∴
=
,
∴∠1=∠B,
∴∠1=∠2,
∴AF=CF;
(3)解:在Rt△ADF中,∠DAF=30°,FA=FC=2,
∴DF=
AF=1,
∴AD=
DF=
,
∵AF∥CG,
∴DA:AG=DF:CF,即
:AG=1:2,
∴AG=2
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,AD=8,BC=16,点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动,点P停止运动时,点Q也随之停止运动,设运动时间为t秒.

(1)当t为多少时,以点ABQD为顶点的四边形是平行四边形?
(2)当t为多少时,以点ABQP为顶点的四边形是平行四边形?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,点E在AD上,且EC平分∠BED。
(1)△BEC是否是等腰三角形?证明你的结论。
(2)若AB=1,∠ABE=450,求矩形ABCD的面积。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将周长为8的△ABC沿BC方向平移1个单位长度得到
,则四边形
的周长为( )
A. 8 B. 10 C. 12 D. 16
-
科目: 来源: 题型:
查看答案和解析>>【题目】小志家冰箱的冷冻室的温度为-6℃,调高4℃后的温度为____________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算(1﹣)(x+1)的结果是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.
(1)求这两种商品的进价;
(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?
相关试题