【题目】如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上. ![]()
(1)若DE=BF,求证:四边形AFCE是平行四边形;
(2)若四边形AFCE是菱形,求菱形AFCE的周长.
参考答案:
【答案】
(1)证明:∵四边形ABCD为矩形,
∴AB=CD,AB∥CD,
∵DE=BF,
∴AF=CE,AF∥CE,
∴四边形AFCE是平行四边形
(2)解:∵四边形AFCE是菱形,
∴AE=CE,
设DE=x,
则AE=
,CE=8﹣x,
则
=8﹣x,
化简有16x﹣28=0,
解得:x=
,
将x=
代入原方程检验可得等式两边相等,
即x=
为方程的解.
则菱形的边长为:8﹣
=
,
周长为:4×
=25,
故菱形AFCE的周长为25
【解析】(1)首先根据矩形的性质可得AB平行且等于CD,然后根据DE=BF,可得AF平行且等于CE,即可证明四边形AFCE是平行四边形;(2)根据四边形AFCE是菱形,可得AE=CE,然后设DE=x,表示出AE,CE的长度,根据相等求出x的值,继而可求得菱形的边长及周长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A.sin60°=
B.a6÷a2=a3
C.(﹣2)0=2
D.(2a2b)3=8a6b3 -
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.

根据以上信息解答下列问题:
(1)这次抽样调查的样本容量是;
(2)通过“电视”了解新闻的人数占被调查人数的百分比为;扇形统计图中,“手机上网”所对应的圆心角的度数是;
(3)请补全条形统计图;
(4)若该市约有70万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上,从中随机抽取两张.

(1)用画树状图或列表的方法,列出抽得扑克牌上所标数字的所有可能组合;
(2)求抽得的扑克牌上的两个数字之积的算术平方根为有理数的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】商场进了一批家用空气净化器,成本为1200元/台.经调查发现,这种空气净化器每周的销售量y(台)与售价x(元/台)之间的关系如图所示:

(1)请写出这种空气净化器每周的销售量y与 售价x的函数关系式(不写自变量的范围);
(2)若空气净化器每周的销售利润为W(元),则当售价为多少时,可获得最大利润,此时的最大利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.

(1)求证:AC是⊙O的切线;
(2)已知AB=10,BC=6,求⊙O的半径r. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣
x2+bx+c与x轴交于A(﹣1,0)、B两点,与y轴交于点C(0,2),抛物线的对称轴交x轴于点D.
(1)求抛物线的解析式;
(2)求sin∠ABC的值;
(3)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由;
(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时线段EF最长?求出此时E点的坐标.
相关试题