【题目】如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE并延长,交AD的延长线于F,△ABC的外接圆⊙O交CF于点M.
![]()
(1)求证:BE是⊙O的切线;
(2)求证:AC2=CMCF.
参考答案:
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)连接OB,只要证明∠OBE=90°即可求解;
(2)连接MB,易证∠CMB=∠CBF,则可以得到△CMB∽△CBF,根据相似三角形对应边的比相等即可得证.
试题解析:(1)连结OB,
![]()
∵△ABC和△BDE都是等边三角形,
∴∠ABC=∠EBD=60°,
∴∠CBE=60°,∠OBC=30°,
∴∠OBE=90°,
∴BE是⊙O的切线;
(2)连结MB,则∠CMB=180°-∠A=120°
∵∠CBF=60°+60°=120°
∴∠CMB=∠CBF
∵∠BCM=∠FCB
∴△CMB∽△CBF
∴
,即CB2=CMCF,
∵AC=CB
∴AC2=CMCF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,①②③④⑤五个平行四边形拼成一个含30度内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为26cm2,四边形ABCD面积是19cm2,则①②③④四个平行四边形周长的总和为( )

A. 96cm B. 64cm C. 48cm D. 36cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知Rt△ABC中,∠ACB=90°,以斜边AB为边向外作正方形ABDE,且正方形的对角线交于点O,连结OC.已知AC=5,OC=6
,则另一直角边BC的长为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD 中,AB=3,BC=4,E,F 是对角线 AC上的两个动点,分别从 A,C 同时出发, 相向而行,速度均为 1cm/s,运动时间为 t 秒,当其中一个动点到达后就停止运动.
(1)若 G,H 分别是 AB,DC 中点,求证:四边形 EGFH 始终是平行四边形.
(2)在(1)条件下,当 t 为何值时,四边形 EGFH 为矩形.
(3)若 G,H 分别是折线 A﹣B﹣C,C﹣D﹣A 上的动点,与 E,F 相同的速度同时出发,当 t 为何值时,四边形 EGFH 为菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:

(1)九(1)班的学生人数为 ,并把条形统计图补充完整;
(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知两个有理数的和比其中任何一个加数都小 ,那么一定是 ( )
A. 这两个有理数同为正数 B. 这两个有理数同为负数
C. 这两个有理数异号 D. 这两个有理数中有一个为零
-
科目: 来源: 题型:
查看答案和解析>>【题目】市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合适的人选是 .
甲
乙
丙
丁
平均数
8.2
8.0
8.0
8.2
方差
2.1
1.8
1.6
1.4
相关试题