【题目】(本题10分) (湖南湘西24,10分)如图,已知矩形ABCD的两条对角线相交于O,∠ACB=30°,AB=2.
(1)求AC的长.
(2)求∠AOB的度数.
(3)以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.![]()
参考答案:
【答案】解(1)在矩形ABCD中,∠ABC=90°,
∴Rt△ABC中, ∠ACB=30°,
∴AC=2AB=4.
(2)在矩形ABCD中,
∴AO=OA=2,
又∵AB=2,
∴△AOB是等边三角形,
∴∠AOB=60°.
(3)由勾股定理,得BC=
,
.
,所以菱形OBEC的面积是2
.
【解析】
解 (1)在矩形ABCD中,∠ABC=90°,
∴Rt△ABC中, ∠ACB=30°,
∴AC=2AB=4.
(2)在矩形ABCD中,
∴AO=OA=2,
又∵AB=2,
∴△AOB是等边三角形,
∴∠AOB=60°.
(3)由勾股定理,得BC=
,
.
,所以菱形OBEC的面积是2
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,有一个菱形BFDE(点E,F分别在线段AB,CD上),记它们的面积分别为SABCD和SBFDE , 现给出下列命题:①若
=
,则tan∠EDF=
;②若DE2=BDEF,则DF=2AD,则( ) 
A.①是假命题,②是假命题
B.①是真命题,②是假命题
C.①是假命题,②是真命题
D.①是真命题,②是真命题 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形OABC中,点B(4,4),点E,F分别在边BC,BA上,OE=
,若∠EOF=45°,则OF的解析式为 ( )
A. y=
x B. y=
x C. y=
x D. y=
x -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
的正方形网格中,点P是
的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;过点P画OA的垂线,垂足为H;
(2)线段PH的长度是点P到直线__________的距离;
(3)线段__________的长度是点C到直线OB的距离;
(4)线段PC、PH、OC这三条线段大小关系是__________(用“<”号连接).

-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.
甲种客车
乙种客车
载客量/(人/辆)
45
30
租金/(元/辆)
400
280
(1)共需租多少辆客车?
(2)请给出最节省费用的租车方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据要求完成下列题目:
(1)如图中有________块小正方体;
(2) 请在下面方格纸中分别画出它的左视图和俯视图(画出的图都用铅笔涂上阴影);

(3)用小正方体搭一个几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要________个小正方体,最多要________个小正方体.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题满分8分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.
(1) 请你直接写出甲厂的制版费及y甲与x的函数解析式,并求出其证书印刷单价.
(2) 当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?


(3) 如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?
相关试题