【题目】先化简,再求代数式的值:
,其中m=1.
【答案】(1)
, ![]()
【解析】先进行分式的混合运算,再代入求值即可.
解:原式=
,
=
,
=
;
当m =1时,原式=
=-
.
【题型】解答题
【结束】
25
【题目】如图,在△ABC中,D为BC边的中点,过D点分别作DE∥AB交AC于点E,DF∥AC交AB于点F.
求证:BF=DE.
![]()
参考答案:
【答案】证明见解析
【解析】试题分析:根据两组对边分别平行的四边形为平行四边形可判定四边形AFDE是平行四边形,根据平行四边形的性质可得DE=AF,再由D为BC边的中点,DF∥AC,可得BF=AF,即可得BF=DE.
试题解析:
∵DE∥AB,DF∥AC,
∴DE∥AF,DF∥AE,
∴四边形AFDE是平行四边形,
∴DE=AF,
∵D为BC边的中点,
∴BD=DC,∵DF∥AC,
∴BF=AF,
∴BF=DE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若点M(2﹣a,3a+6)到两坐标轴的距离相等,则a的值为( )
A. 4或1B. ﹣4或﹣1C. ﹣4D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】对下列多项进行因式分解:
(1).(x+2)(x+4)+1.
(2).x2﹣5x﹣6
(3).(a2+4)2﹣16a2
(4).18b(a﹣b)2﹣12(a﹣b)3
【答案】(1)(x+3)2(2)(x﹣6)(x+1);(3)(a+2)2(a﹣2)2;(4) 6(a﹣b)2(5b﹣2a)
【解析】试题分析:(1)先展开合并后利用完全平方公式因式分解即可;(2)利用十字相乘法因式分解即可;(3)先利用平方差公式,再利用完全平方公式分解因式即可;(4)直接利用提公因式法因式分解即可.
试题解析:
(1)原式=x2+6x+9=(x+3)2.
(2)原式=(x﹣6)(x+1);
(3)原式=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)2;
(4)原式=6(a﹣b)2(3b﹣2a+2b)=6(a﹣b)2(5b﹣2a);
【题型】解答题
【结束】
23【题目】计算下列各分式:
(1).
(2).
-a+b (3).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE ,

(1) 求证∠D=∠F
(2) 用直尺和圆规在AD上作出一点P,使∠BPC=∠D(保留作图痕迹,不写作法).
-
科目: 来源: 题型:
查看答案和解析>>【题目】若m2+m-1=0,则m3+2m2+2016的值为( )
A. 2020 B. 2017 C. 2016 D. 2015
-
科目: 来源: 题型:
查看答案和解析>>【题目】某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:
x(元)
180
260
280
300
y(间)
100
60
50
40
(1)求y与x之间的函数表达式;
(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,D为BC边的中点,过D点分别作DE∥AB交AC于点E,DF∥AC交AB于点F.
求证:BF=DE.

【答案】证明见解析
【解析】试题分析:根据两组对边分别平行的四边形为平行四边形可判定四边形AFDE是平行四边形,根据平行四边形的性质可得DE=AF,再由D为BC边的中点,DF∥AC,可得BF=AF,即可得BF=DE.
试题解析:
∵DE∥AB,DF∥AC,
∴DE∥AF,DF∥AE,
∴四边形AFDE是平行四边形,
∴DE=AF,
∵D为BC边的中点,
∴BD=DC,∵DF∥AC,
∴BF=AF,
∴BF=DE.
【题型】解答题
【结束】
26【题目】如图,已知:∠C=∠D,OD=OC.求证:DE=CE.

相关试题