【题目】如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.
![]()
(1)求证:△ABD≌△FBC;
(2)如图(2),求证:AM2+MF2=AF2.
参考答案:
【答案】(1)证明见详解;(2)证明见详解
【解析】
(1)根据四边形ABFG、BCED是正方形得到两对边相等,一对直角相等,根据图形利用等式的性质得到一对角相等,利用SAS即可得到三角形全等;
(2)根据全等三角形的性质和勾股定理即可得到结论.
解:(1)∵四边形ABFG、BCED是正方形,
∴AB=FB,CB=DB,∠ABF=∠CBD=90°,
∴∠ABF+∠ABC=∠CBD+∠ABC,
即∠ABD=∠CBF,
在△ABD和△FBC中,
,
∴△ABD≌△FBC(SAS);
(2)∵△ABD≌△FBC,
∴∠BAD=∠BFC,
∴∠AMF=180°-∠BAD-∠CNA=180°-(∠BFC+∠BNF)=180°-90°=90°,
∴AM2+MF2=AF2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.
(1)求一次函数的解析式;
(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由;
(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=x+2与抛物线y=ax2+bx+6相交于A(
,
)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴,交抛物线于点C.(1)求抛物线的表达式;
(2)是否存在这样的点P,使线段PC的长有最大值?若存在,求出这个最大值,若不存在,请说明理由;
(3)当△PAC为直角三角形时,求点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小丽准备测一根旗杆AB的高度,已知小丽的眼睛离地面的距离EC=1.5米,第一次测量点C和第二次测量点D之间的距离CD=10米,∠AEG=30°,∠AFG=60°,请你帮小丽计算出这根旗杆的高度.(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,水坝的横断面是梯形,背水坡AB的坡角∠BAD=60°,坡长AB=20
m,为加强水坝强度,将坝底从A处向后水平延伸到F处,使新的背水坡的坡角∠F=45°,求AF的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有个形如六边形的点阵,它的中心是一个点,算第一层,第二层每边有两个点,第三层每边有三个点,依此类推.

(1)填写下表:
层数
1
2
3
4
5
6
该层对应的点数
1
6
_____
18
_____
_____
(2)写出第n层所对应的点数为_____;
(3)如果某一层共96个点,那么它是第_____层,此时所有层中共有_____个点.
相关试题