【题目】用配方法解方程x2+10x+9=0,配方后可得( )
A.(x+5)2=16
B.(x+5)2=1
C.(x+10)2=91
D.(x+10)2=109
参考答案:
【答案】A
【解析】解:方程x2+10x+9=0,
整理得:x2+10x=﹣9,
配方得:x2+10x+25=16,即(x+5)2=16,
故选:A.
【考点精析】本题主要考查了配方法的相关知识点,需要掌握左未右已先分离,二系化“1”是其次.一系折半再平方,两边同加没问题.左边分解右合并,直接开方去解题才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2 .
(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC= , OC△OA=;
(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;
(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=
AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a2+a﹣3=0,那么a2(a+4)的值是
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.
(1)求证:四边形AB'C'D是菱形;
(2)四边形ABC'D′的周长为 ;
(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】当a=0时,方程ax+b=0(其中x是未知数,b是已知数)的解的情况是( )
A. 唯一解B. 无解C. 有无数多个解D. 无解或有无数多个解
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.

(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;
(3)当△ADE是等腰三角形时,求AE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是( )
A.(2,5)
B.(﹣8,5)
C.(﹣8,﹣1)
D.(2,﹣1)
相关试题