【题目】某商场计划购进A,B两种新型节能台灯共120盏,这两种台灯的进价、售价如表所示:
类型 价格 | 进价(元/盏) | 售价(元/盏) |
A型 | 30 | 45 |
B型 | 50 | 70 |
(1)若商场预计进货款为5200元,则这两种台灯各购进多少盏?
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
参考答案:
【答案】(1)A种台灯购进40盏,B种台灯购进80盏;(2)A种台灯购进30盏,B种台灯购进90盏.才能使商场在销售完这批台灯时获利最多,此时利润为2250元
【解析】
(1)设商场应购进A型台灯x盏,B种台灯购进y盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款及A,B两种台灯共120盏列出方程组求解即可;
(2)设商场销售完这批台灯可获利w元,根据获利等于两种台灯的获利总和列式整理,再求出m的取值范围,然后根据一次函数的增减性求出获利的最大值.
(1)设A种台灯购进x盏,B种台灯购进y盏.由题意得
![]()
解得![]()
答:A种台灯购进40盏,B种台灯购进80盏.
(2)设A种台灯购进m盏,B种台灯购进(120-m)盏.利润为w元.
由题意得
W=(45-30)m+(70-50)(120-m)=-5m+2400
因为120-m≤3m
所以m≥30
因为k=-5<0,所以w随m的增大而减小
所以当m=30时,w有最大利润为-5×30+2400=2250
答:A种台灯购进30盏,B种台灯购进90盏.才能使商场在销售完这批台灯时获利最多,此时利润为2250元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线
∥
,一圆交直线a,b分别于A、B、C、D四点,点P是圆上的一个动点,连接PA、PC.(1)如图1,直接写出∠PAB、∠PCD、∠P之间的数量关系为 ;
(2)如图2,直接写出∠PAB、∠PCD、∠P之间的数量关系为
(3)如图3,求证:∠P=∠PAB+∠PCD;
(4)如图4,直接写出∠PAB、∠PCD、∠P之间的数量关系为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,用长为6m的铝合金条制成“日”字形窗框,若窗框的宽为xm,窗户的透光面积为ym2(铝合金条的宽度不计).
(1)求出y与x的函数关系式;
(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知点B(0,9),点C为x轴上一动点,连接BC,△ODC和△EBC都是等边三角形.

(1)求证:DE=BO;
(2)如图2,当点D恰好落在BC上时.
①求点E的坐标;
②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;
③如图3,点M是线段BC上的动点(点B,点C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:

(1)若工厂计划获利14万元,问A、B两种产品应分别生产多少件?
(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?
(3)在(2)条件下,哪种方案获利最大?并求最大利润.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,已知点A(0,a),B(0,b)在y轴上,点 C(m,b)是第四象限内一点,且满足
,△ABC的面积是56;AC交x轴于点D,E是y轴负半轴上的一个动点.(1)求C点坐标;
(2)如图2,连接DE,若DE
AC于D点,EF为∠AED的平分线,交x轴于H点,且∠DFE=90°,求证:FD平分∠ADO;(3)如图3,E在y轴负半轴上运动时,连EC,点P为AC延长线上一点,EM平分 ∠AEC,且PM⊥EM于M点,PN⊥x轴于N点,PQ平分∠APN,交x轴于Q点,则E在运动过程中,
的大小是否发生变化,若不变,求出其值;若变化,请说明理由.
相关试题