【题目】如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:
①四边形AECF为平行四边形;
②∠PBA=∠APQ;
③△FPC为等腰三角形;
④△APB≌△EPC.
其中正确结论的个数为( )
![]()
A. 1 B. 2 C. 3 D. 4
参考答案:
【答案】B
【解析】①根据三角形内角和为180°易证∠PAB+∠PBA=90°,易证四边形AECF是平行四边形,即可解题;
②根据平角定义得:∠APQ+∠BPC=90°,由正方形可知每个内角都是直角,再由同角的余角相等,即可解题;
③根据平行线和翻折的性质得:∠FPC=∠PCE=∠BCE,∠FPC≠∠FCP,且∠PFC是钝角,△FPC不一定为等腰三角形;
④当BP=AD或△BPC是等边三角形时,△APB≌△FDA,即可解题.
①如图,EC,BP交于点G;
![]()
∵点P是点B关于直线EC的对称点,
∴EC垂直平分BP,
∴EP=EB,
∴∠EBP=∠EPB,
∵点E为AB中点,
∴AE=EB,
∴AE=EP,
∴∠PAB=∠PBA,
∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,
∴∠PAB+∠PBA=90°,
∴AP⊥BP,
∴AF∥EC;
∵AE∥CF,
∴四边形AECF是平行四边形,
故①正确;
②∵∠APB=90°,
∴∠APQ+∠BPC=90°,
由折叠得:BC=PC,
∴∠BPC=∠PBC,
∵四边形ABCD是正方形,
∴∠ABC=∠ABP+∠PBC=90°,
∴∠ABP=∠APQ,
故②正确;
③∵AF∥EC,
∴∠FPC=∠PCE=∠BCE,
∵∠PFC是钝角,
当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,
如右图,△PCF不一定是等腰三角形,
故③不正确;
④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,
∴Rt△EPC≌△FDA(HL),
∵∠ADF=∠APB=90°,∠FAD=∠ABP,
当BP=AD或△BPC是等边三角形时,△APB≌△FDA,
∴△APB≌△EPC,
故④不正确;
其中正确结论有①②,2个,
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,梯形
中,上底
下底
高
梯形的面积
动点
从点
出发,沿
方向,以每秒
个单位长度的速度匀速运动.
请根据
与
的关系式,完成下列问题:




···





···
补充表格中的数据;
当
时,表示的图形是_ .
梯形的面积
与
的关系如图2所示,则点
表示的实际意义是_ ;
若点
运动的时间为
的面积为
与
的关系如图3所示.求
的长和
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在等边三角形
中
点
是
边上的一点,点
是
边上的一点,连接
以
为边作等边三角形
连接
.
如图1,当点
与点
重合时,
找出图中的一对全等三角形,并证明;
;
如图2,若
请计算
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求点B的坐标;
(2)求证:四边形ABCE是平行四边形;
(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)
(1)写出y与x之间的函数解析式;
(2)画出此函数的图象.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=
S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,E、F分别是AD、BC的中点,连接FE并延长,分别交CD的延长线于点M、N,∠BME=∠CNE,求证:AB=CD.

相关试题