【题目】阅读下面材料:
如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=
交于A(1,3)和B(﹣3,﹣1)两点.
观察图象可知:
①当x=﹣3或1时,y1=y2;
②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>
的解集.
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.![]()
下面是他的探究过程,请将(2)、(3)、(4)补充完整:
(1)将不等式按条件进行转化:
当x=0时,原不等式不成立;
当x>0时,原不等式可以转化为x2+4x﹣1>
;
当x<0时,原不等式可以转化为x2+4x﹣1<
;
(2)构造函数,画出图象
设y3=x2+4x﹣1,y4=
,在同一坐标系中分别画出这两个函数的图象.
双曲线y4=
如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)
(3)确定两个函数图象公共点的横坐标
观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为 ;
(4)借助图象,写出解集
结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为 .
参考答案:
【答案】(2)图见试题解析;(3)±1和﹣4;(4)x>1或﹣4<x<﹣1.
【解析】试题分析:(2)首先确定二次函数的对称轴,然后确定两个点即可作出二次函数的图象;
(3)根据图象即可直接求解;
(4)根据已知不等式x3+4x2﹣x﹣4>0即当x>0时,x2+4x﹣1>
,;当x<0时,x2+4x﹣1<
,根据图象即可直接写出答案.
试题解析:(2)
;
(3)两个函数图象公共点的横坐标是±1和﹣4.
则满足y3=y4的所有x的值为±1和﹣4.
故答案是:±1和﹣4;
(4)不等式x3+4x2﹣x﹣4>0即当x>0时,x2+4x﹣1>
,此时x的范围是:x>1;
当x<0时,x2+4x﹣1<
,则﹣4<x<﹣1.
故答案是:x>1或﹣4<x<﹣1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.

(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;
(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为cm2 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系xOy中,ABCD四个顶点的坐标分别为A(1,1),B(4,1),C(5,2),D(2,2),直线l:y=kx+b与直线y=﹣2x平行.

(1)k=;
(2)若直线l过点D,求直线l的解析式;
(3)若直线l同时与边AB和CD都相交,求b的取值范围;
(4)若直线l沿线段AC从点A平移至点C,设直线l与x轴的交点为P,问是否存在一点P,使△PAB为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有______人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】化简:(1)(5a-3b)-3(a-2b);(2)3x2-[7x-(4x-3)-2x2].
-
科目: 来源: 题型:
查看答案和解析>>【题目】若多项式4x4+1加上一个含字母的单项式,就能变形为一个含x的多项式的平方,则这样的单项式为 ___________ .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,若BC=EC,∠BCE=∠ACD,则添加不能使△ABC≌△DBC的条件是( )

A.AB=DE
B.∠B=∠E
C.AC=DC
D.∠A=∠D
相关试题