【题目】如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.![]()
(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;
(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为cm2 . ![]()
参考答案:
【答案】
(1)四边形EFGH是正方形.
证明:∵四边形ABCD是正方形,
∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,
∵HA=EB=FC=GD,
∴AE=BF=CG=DH,
∴△AEH≌△BFE≌△CGF≌△DHG,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形,
∵△DHG≌△AEH,
∴∠DHG=∠AEH,
∵∠AEH+∠AHE=90°,
∴∠DHG+∠AHE=90°,
∴∠GHE=90°,
∴四边形EFGH是正方形
(2)1
【解析】解:(2)∵HA=EB=FC=GD=1,AB=BC=CD=AD=3,
∴GF=EF=EH=GH=
,
∵由(1)知,四边形EFGH是正方形,
∴GO=OF,∠GOF=90°,
由勾股定理得:GO=OF=
,
∵S四边形FCGO=
×1×2+
×
×
=
,
∴S阴影=
﹣S四边形FCGO×4=10﹣9=1.
(1)抓住已知条件先证明∠A=∠B=∠C=∠D=90°,HA=EB=FC=GD,AE=BF=CG=DH,进而得出△AEH≌△BFE≌△CGF≌△DHG,证得EF=FG=GH=HE,证得四边形EFGH是菱形,再证明有一个角是直角,即可得出结论。
(2)利用勾股定理得出GF=EF=EH=GH的长,由(1)知,四边形EFGH是正方形,得到GO=OF,∠GOF=90°,进而求出OG、OF的长,就可以求出四边形FCGO的面积,即可求出阴影部分的面积。
-
科目: 来源: 题型:
查看答案和解析>>【题目】若a+b=2019,c+d=-5,则代数式(a-2c)-(2d-b)=______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】近年来,我国多个城市遭遇雾霾天气,空气中可吸入颗粒(又称PM2.5)浓度升高,为应对空气污染,小强家购买了空气净化器,该装置可随时显示室内PM2.5的浓度,并在PM2.5浓度超过正常值25(mg/m3)时吸收PM2.5以净化空气.随着空气变化的图象(如图),请根据图象,解答下列问题:

(1)写出题中的变量;
(2)写出点M的实际意义;
(3)求第1小时内,y与t的一次函数表达式;
(4)已知第5﹣6小时是小强妈妈做晚餐的时间,厨房内油烟导致PM2.5浓度升高.若该净化器吸收PM2.5的速度始终不变,则第6小时之后,预计经过多长时间室内PM2.5浓度可恢复正常? -
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(﹣1)2016+(3.14﹣π)0= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系xOy中,ABCD四个顶点的坐标分别为A(1,1),B(4,1),C(5,2),D(2,2),直线l:y=kx+b与直线y=﹣2x平行.

(1)k=;
(2)若直线l过点D,求直线l的解析式;
(3)若直线l同时与边AB和CD都相交,求b的取值范围;
(4)若直线l沿线段AC从点A平移至点C,设直线l与x轴的交点为P,问是否存在一点P,使△PAB为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有______人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=
交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:
①当x=﹣3或1时,y1=y2;
②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>
的解集.有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.

下面是他的探究过程,请将(2)、(3)、(4)补充完整:
(1)将不等式按条件进行转化:
当x=0时,原不等式不成立;
当x>0时,原不等式可以转化为x2+4x﹣1>
;当x<0时,原不等式可以转化为x2+4x﹣1<
;(2)构造函数,画出图象
设y3=x2+4x﹣1,y4=
,在同一坐标系中分别画出这两个函数的图象.双曲线y4=
如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)(3)确定两个函数图象公共点的横坐标
观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为 ;
(4)借助图象,写出解集
结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为 .
相关试题