【题目】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有公共点,则r的取值范围是_____.
![]()
参考答案:
【答案】1≤r≤![]()
【解析】分析:作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,根据题意得出四边形OECF是正方形,得出OF=CF,由勾股定理得出AB=
=5,由内心的性质得出CF=OF=1,AF=AC﹣CF=3,由勾股定理求出OA,由直线与圆的位置关系,即可得出结果.
详解:作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,连接OA、OB,如图所示
则四边形OECF是正方形,∴OF=CF=OE=CE.
∵∠C=90°,AC=4,BC=3,∴AB=
=5.
∵O是△ABC的内心,∴CE=CF=OF=OE=
(AC+BC﹣AB)=1,∴AF=AC﹣CF=3,BE=BC﹣CE=2,∴OA=
=
=
,OB=
=
=
,当r=1时,以O为圆心,r为半径的圆与线段AB有唯一交点;
当1<r≤
时,以O为圆心,r为半径的圆与线段AB有两个交点;
当
<r≤
时,以O为圆心,r为半径的圆与线段AB有1个交点;
∴以O为圆心,r为半径的圆与线段AB有交点,则r的取值范围是1≤r≤
;
故答案为:1≤r≤
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题满分8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.

大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:
一周诗词诵背数量
3首
4首
5首
6首
7首
8首
人数
1
3
5
6
10
15
请根据调查的信息
(1)求活动启动之初学生“一周诗词诵背数量”的中位数;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
-
科目: 来源: 题型:
查看答案和解析>>【题目】探究题:如图,用同样大小的黑色棋子按如图所示的规律摆放,它们的棋子数依次表示为 a1,a2,a3,a4,…,an.
… 请你认真观察上面四个图案,从中发现规律,并试着解答下列问题:
(1)写出 a1,a2,a3,a4 的值;
(2)求 a7 的值;
(3)用 n 表示出 an,并判断第几个图案有 6055 个黑色棋子.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=x2
2x+c的顶点A在直线l:y=x
5上.(1)求抛物线顶点A的坐标;
(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;
(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)
(1)画出△ABC向下平移4个单位,再向左平移1个单位得到的△A1B1C1,并直接写出C1点的坐标;
(2)作出△ABC绕点A顺时针方向旋转90°后得到的△A2B2C2,并直接写出C2点的坐标;

-
科目: 来源: 题型:
查看答案和解析>>【题目】图
是一个可以自由转动的转盘,被分成了面积相等的三个扇形,分别标有数
,
,
,甲转动一次转盘,转盘停止后指针指向的扇形内的数记为
(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形为止).图
是背面完全一样、牌面数字分别是
,
,
,
的四张扑克牌,把四张扑克牌背面朝上,洗匀后放在桌面上,乙随机抽出一张牌的牌面数字记为
.计算
的值.

(
)用树状图或列表法求
的概率.(
)甲乙两人玩游戏,规定:当
是正数时,甲胜;否则,乙胜,你认为这个游戏规则对甲乙双方公平吗?请说明理由.
相关试题