【题目】某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:
![]()
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?
参考答案:
【答案】(1)56-2x;(2)小娟的说法正确;理由见解析.
【解析】试题分析:(1)、BC的长度=围栏的长度-AB和CD的长度+门的宽度;(2)、首先求出S和x的二次函数关系,然后根据二次函数的性质求出S取最大值时x的值,从而得出矩形不是正方形.
试题解析:(1)、设AB=x米,可得BC=54﹣2x+2=56﹣2x;
(2)、小娟的说法正确;
矩形面积S=x(56﹣2x)=﹣2(x﹣14)2+392,
∵56﹣2x>0,
∴x<28,
∴0<x<28,
∴当x=14时,S取最大值,
此时x
56﹣2x,
∴面积最大的不是正方形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)阅读下文,寻找规律:
已知 x≠1 时,(1-x)(1+x)=1-x
,(1-x)(1+x+x
)=1-x
,(1-x)(1+x+x
+x
)=1-x
.…观察上式,并猜想:
(1-x)(1+x+x
+ x
+x
)= ____________. (1-x)(1+x+x
+…+x
)= ____________.(2) 通过以上规律,请你进行下面的探素:
①(a-b)(a+b)= ____________.
②(a-b)(a
+ab+b
)= ____________.③(a-b)(a
+a
+ab
+b
)= ____________.(3) 根据你的猜想,计算:
1+2+2
+…+2
+2
+2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,已知直线
交
轴于点
,
轴于点
,
的角平分线
交
轴于点
,过点
作直线
的垂线,交
轴于点
.

(1)求直线
的解析式;(2)如图2,若点
为直线
上的一个动点,过点
作
轴,交直线
于点
,当四边形
为菱形时,求
的面积;(3)如图3,点
为
轴上的一个动点,连接
、
,将
沿
翻折得到
,当以点
、
、
为顶点的三角形是等腰三角形时,求点
的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.
(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;
(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:
(1)获得一等奖的学生人数;
(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB
,BC
,连结对角线AC,点O为AC的中点,点E为线段BC上的一个动点,连结OE,将△AOE沿OE翻折得到△FOE,EF与AC交于点G,若△EOG的面积等于△ACE的面积的
,则BE=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=BC,以AB为直径的圆O交AC于点D,过点D作DE⊥BC,垂足为E,连接OE.
(1)求证:DE是⊙O的切线;
(2)若CD=
,∠ACB=30°,求OE的长.
相关试题