【题目】如图,在Rt△ABC中,∠C=90°,CA=12
cm,BC=12cm;动点P从点C开始沿CA以2
cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BC以 2cm/s的速度向点C移动.如果P、Q、R分别从C、A、B同时移动,移动时间为t(0<t<6)s.![]()
(1)∠CAB的度数是;
(2)以CB为直径的⊙O与AB交于点M,当t为何值时,PM与⊙O相切?
(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求S的最小值及相应的t值;
(4)是否存在△APQ为等腰三角形?若存在,求出相应的t值;若不存在请说明理由.
参考答案:
【答案】
(1)30°
(2)解:如图1,连接OP,OM. ![]()
当PM与⊙O相切时,有∠PMO=∠PCO=90°,
∵MO=CO,PO=PO,
∴Rt△PMO≌Rt△PCO,
∴∠MOP=∠COP;
由(1)知∠OBA=60°,
∵OM=OB,
∴△OBM是等边三角形,
∴∠BOM=60°,
∴∠MOP=∠COP=60°,
∴CP=COtan∠COP=6tan60°=6
,
又∵ ![]()
∴2
t=6 ![]()
∴t=3,
即:t=3s时,PM与⊙O相切;
(3)解:如图2,过点Q作QE⊥AC于点E,
∵∠BAC=30°,AQ=4t,
![]()
∴
AE=AQcos∠BAC=4tcos30°=2
t,
∴
![]()
∴S△PQR=S△ACB﹣S△AQP﹣S△QBR﹣S△PCR
,
∴当t=3s时,
cm2;
(4)解:存在.如图3,
![]()
分三种情况:
①PQ1=AQ1=4t时,过点Q1作Q1D⊥AC于点D,
则
,
∴
,
∴t=2;
②当AP=AQ2=4t时,
∵
,
∴
,
③当PA=PQ3=4t时,
过点P作PH⊥AB于点H,
AH=PAcos30°=
=18﹣3tAQ3=2AH=36﹣6t,
∴36﹣6t=4t,
∴t=3.6,
综上所述,当
s时,△APQ是等腰三角形.
【解析】解:(1)∵∠C=90°,CA=12
cm,BC=12cm,
∴tan∠CAB=
,
∴∠CAB=30°,
所以答案是:30°;
【考点精析】根据题目的已知条件,利用锐角三角函数的定义和特殊角的三角函数值的相关知识可以得到问题的答案,需要掌握锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数;分母口诀:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口诀:“123,321,三九二十七”.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的
(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠BAC 的角平分线与 BC 的垂直平分线交于点 D,DE⊥AB, DF⊥AC,垂足分别为 E,F.若 AB=10,AC=8,求 BE 长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=
x2+mx+n与直线y=﹣
x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).
(1)求抛物线的解析式和tan∠BAC的值;
(2)在(1)条件下,P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:
①△DEF是等腰直角三角形;
②AE=CF;
③△BDE≌△ADF;
④BE+CF=EF;
⑤S四边形AEDF=
AD2,其中正确结论是_____(填序号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).

请根据上面两个不完整的统计图回答以下4个问题:
(1)这次抽样调查中,共调查了_____名学生.
(2)补全条形统计图中的缺项.
(3)在扇形统计图中,选择教师传授的占_____%,选择小组合作学习的占_____%.
(4)根据调查结果,估算该校1800名学生中大约有_____人选择小组合作学习模式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知三角形ABC在平面直角坐标系中的位置如图所示.将三角形ABC向右平移6个单位长度,再向下平移6个单位长度得到三角形A1B1C1.(图中每个小方格边长均为1个单位长度) .

(1)在图中画出平移后的三角形A1B1C1;
(2)求三角形ABC的面积;
(3)直接写出三角形A1B1C1各顶点的坐标.
相关试题