【题目】珠海市某中学在创建“书香校园”活动中,为了解学生的读书情况,某校抽样调查了部分同学在一周内的阅读时间,绘制如下统计图.根据图中信息,解答下列问题:
(1)被抽查学生阅读时间的中位数为 h,平均数为 h;
(2)若该校共有1500名学生,请你估算该校一周内阅读时间不少于3h的学生人数.
![]()
参考答案:
【答案】(1)2h,2.34h;(2)540.
【解析】
(1)根据统计图中的数据确定出学生劳动时间的众数、中位数和平均数即可;
(2)根据总人数×阅读时间不少于三小时的百分比可得结果.
(1)2h,2.34h
(2)被抽查一周内阅读时间不少于3h的学生人数占比为:
=36%
1500×36%=540(人)
答:被抽查一周内阅读时间不少于3h的学生人数为540
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图,在数轴上点A,B所对应的数是-4,4.

对于关于x的代数式N,我们规定:当有理数x在数轴上所对应的点为AB之间(包括点A,B)的任意一点时,代数式N取得所有值的最大值小于等于4,最小值大于等于-4,则称代数式N是线段AB的封闭代数式.
例如,对于关于x的代数式|x|,当x=±4时,代数式|x|取得最大值是4;当x=0时,代数式|x|取得最小值是0,所以代数式|x|是线段AB的封闭代数式.
问题:
(1)关于x代数式|x-1|,当有理数x在数轴上所对应的点为AB之间(包括点A,B)的任意一点时,取得的最大值和最小值分别是____ ______.
所以代数式|x-1|__________(填是或不是)线段AB的封闭代数式.
(2)以下关x的代数式:
①
;②x2+1;③x2+|x|-8;④|x+2|-|x-1|-1.是线段AB的封闭代数式是__________,并证明(只需要证明是线段AB的封闭代数式的式子,不是的不需证明).
(
)关于x的代数式
是线段AB的封闭代数式,则有理数a的最大值是__________,最小值是__________. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知E、F、G、H分别是菱形ABCD的边AB、BC、CD、AD的中点,则四边形EFGH的形状一定是( )
A. 平行四边形B. 矩形C. 菱形D. 正方形
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):
星期
一
二
三
四
五
六
日
增减(辆)
-1
+3
-2
-4
+7
-5
-10
(1)生产量最多的一天比生产量最少的一天多生产多少辆?
(2)本周总的生产量是多少辆?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套.如果每套比原销售价降低10元销售,则每天可多销售100套.该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论(每套西服的利润=每套西服的销售价﹣每套西服的进价).
(1)按原销售价销售,每天可获利润 元.
(2)若每套降低10元销售,每天可获利润 元.
(3)如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套.
按这种方式:
①若每套降低10x元,则每套的销售价格为 元;(用代数式表示)
②若每套降低10x元,则每天可销售 套西服.(用代数式表示)
③若每套降低10x元,则每天共可以获利润 元.(用代数式表示)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD是□ABCD的对角线,AB⊥BD,BD=8cm,AD=10cm,动点P从点D出发,以5cm/s的速度沿DA运动到终点A,同时动点Q从点B出发,沿折线BD—DC运动到终点C,在BD、DC上分别以8cm/s、6cm/s的速度运动.过点Q作QM⊥AB,交射线AB于点M,连接PQ,以PQ与QM为边作□PQMN.设点P的运动时间为t(s)(t>0),□PQMN与□ABCD重叠部分图形的面积为S(cm2).
(1)AP=_______cm(同含t的代数式表示).
(2)当点N落在边AB上时,求t的值.
(3)求S与t之间的函数关系式.
(4)连结NQ,当NQ与△ABD的一边平行时,直接写出t的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果用平面截掉一个长方体的一个角(即切去一个三棱锥),则剩下的几何体最多有_____顶点,最少有_____条棱.
相关试题