【题目】如图,在平面直角坐标系网格中,△ABC的顶点都在格点上,点C坐标(0,﹣1).![]()
(1)作出△ABC关于原点对称的△A1B1C1 , 并写出点A1的坐标;
(2)把△ABC绕点C逆时针旋转90°,得△A2B2C,画出△A2B2C,并写出点A2的坐标;
(3)直接写出△A2B2C的面积.
参考答案:
【答案】
(1)
解:如图所示:
![]()
点A1的坐标为:(1,﹣2);
(2)
解:如图所示:点A2的坐标为:(﹣3,﹣2);
![]()
(3)
解:△A2B2C2的面积=3×3﹣
×1×3﹣
×2×1﹣
×3×2=
.
【解析】(1)根据关于原点对称点的性质得出A,B,C对应点,进而得出答案;(2)根据平面直角坐标系写出点A2的坐标即可.(3)利用面积的和差求解:把三角形ABC的面积看作一个正方形的面积减去三个直角三角形的面积.
【考点精析】解答此题的关键在于理解关于原点对称的点的坐标的相关知识,掌握两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y).
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的
,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;
(2)当甲到达学校时,乙同学离学校还有多远?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.

(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分别是BC、CD上的点.且∠EAF=60°.探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G,使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;

探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=
∠BAD,上述结论是否仍然成立,并说明理由;实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6 cm,AC=8 cm,则△ADE的周长为__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,AB是⊙O的直径,C为⊙O上一点,AD垂直于经过点C的直线DE,垂足为点D,AC平分∠DAB.

(1)求证:直线DE是⊙O的切线;
(2)连接BC,猜想:∠ECB与∠CAB的数量关系,并证明你的猜想. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.
(1)求证:∠AEB=∠ADC;
(2)连接DE,若∠ADC=105°,求∠BED的度数.

相关试题