【题目】如图,已知:在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.
![]()
参考答案:
【答案】75°.
【解析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出即可.
解:∵△BDE是正三角形,
∴∠DBE=60°;
∵在△ABC中,∠C=∠ABC,BE⊥AC,
∴∠C=∠ABC=∠ABE+∠EBC则∠EBC=∠ABC﹣60°=∠C﹣60°,∠BEC=90°;
∴∠EBC+∠C=90°,即∠C﹣60°+∠C=90°
解得∠C=75°.
“点睛”本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD内接于⊙O,直径AC=6,对角线AC、BD交于E点,且AB=BD,EC=1,则AD的长为( )

A.
B.
C.
D.3
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,AB∥CD,∠A = ∠D,试说明 AC∥DE 成立的理由.

下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整。
解:∵ AB ∥ CD (已知)
∴ ∠A = (两直线平行,内错角相等)
又∵ ∠A = ∠D( )
∴ ∠ = ∠ (等量代换)
∴ AC ∥ DE ( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1,将Rt△ABC绕点A逆时针旋转30°后得到△AB′C′,则图中阴影部分的面积是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(
)﹣2﹣|﹣7|+(5
﹣
+25)0﹣(﹣1)2014 . -
科目: 来源: 题型:
查看答案和解析>>【题目】(10分)已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.
(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;
(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,任意两点A (x1,y1),B (x2,y2)规定运算:①A
B=( x1+ x2, y1+ y2);②A
B= x1 x2+y1 y2③当x1= x2且y1= y2时A=B有下列四个命题:(1)若A(1,2),B(2,–1),则A
B=(3,1),A
B=0;(2)若A
B=B
C,则A=C;(3)若A
B=B
C,则A=C;(4)对任意点A、B、C,均有(A
B )
C=A
( B
C )成立.其中正确命题的个数为( )A. 1个 B. 2个 C. 3个 D.4个
相关试题