【题目】如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是( )
![]()
A. 4个 B. 3个 C. 2个 D. 1个
参考答案:
【答案】B
【解析】
通过图象得到
、
、
符号和抛物线对称轴,将方程
转化为函数图象交点问题,利用抛物线顶点证明
.
由图象可知,抛物线开口向下,则
,
,
抛物线的顶点坐标是
,
抛物线对称轴为直线
,
,
,则①错误,②正确;
方程
的解,可以看做直线
与抛物线
的交点的横坐标,
由图象可知,直线
经过抛物线顶点,则直线
与抛物线有且只有一个交点,
则方程
有两个相等的实数根,③正确;
由抛物线对称性,抛物线与
轴的另一个交点是
,则④错误;
不等式
可以化为
,
抛物线顶点为
,
当
时,
,
故⑤正确.
故选:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长方形ABCD中,点P沿着边按B→C→D→A方向运动,开始以每秒m个单位匀速运动、a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动,在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.

(1)直接写出长方形的长和宽;
(2)求m,a,b的值;
(3)当P点在AD边上时,直接写出S与t的函数解析式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某网店销售单价分别为
元/筒、
元/筒的甲、乙两种羽毛球.根据消费者需求,该网店决定用不超过
元购进甲、乙两种羽毛球共
简.且甲种羽毛球的数量大于乙种羽毛球数量的
.已知甲、乙两种羽毛球的进价分别为
元/筒、
元/筒。若设购进甲种羽毛球
简.(1)该网店共有几种进货方案?
(2)若所购进羽毛球均可全部售出,求该网店所获利润
(元)与甲种羽毛球进货量
(简)之间的函数关系式,并求利润的最大值 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )

A. 76° B. 78° C. 80° D. 82°
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:


(1)这次被调查的学生共有 人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
-
科目: 来源: 题型:
查看答案和解析>>【题目】长方体敞口玻璃罐,长、宽、高分别为16 cm、6 cm和6 cm,在罐内点E处有一小块饼干碎末,此时一只蚂蚁正好在罐外壁,在长方形ABCD中心的正上方2 cm处,则蚂蚁到达饼干的最短距离是多少cm.( )

A. 7
B. 
C. 24D.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图.在直角梯形ABCD中,AD//BC,∠B=90°,AG//CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.

(1)求证:四边形DEGF是平行四边形;
(2)如果点G是BC的中点,且BC=12,DC=10,求四边形AGCD的面积.
相关试题