【题目】某网店销售单价分别为
元/筒、
元/筒的甲、乙两种羽毛球.根据消费者需求,该网店决定用不超过
元购进甲、乙两种羽毛球共
简.且甲种羽毛球的数量大于乙种羽毛球数量的
.已知甲、乙两种羽毛球的进价分别为
元/筒、
元/筒。若设购进甲种羽毛球
简.
(1)该网店共有几种进货方案?
(2)若所购进羽毛球均可全部售出,求该网店所获利润
(元)与甲种羽毛球进货量
(简)之间的函数关系式,并求利润的最大值
参考答案:
【答案】(1)3种;(2)W=
,最大为1390元
【解析】
(1)设购进甲种羽毛球
筒,根据题意可列出关于m的不等式组,则可求得m的取值范围,再由m为整数即可求得进货方案;
(2)用m表示出W,可得到W关于m的一次函数,再利用一次函数的性质即可求得答案.
解:(1)设购进甲种羽毛球
筒,则乙种羽毛球(
)筒,
由题意,得
,
解得
.
又∵
是整数,
∴m=76,77,78共三种进货方案.
(2)由题意知,甲利润:
元/筒,乙利润:
元/筒,
∴![]()
∵
随
增大而增大
∴当
时,
(元).
即利润的最大值是1390元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:
(1)sad60°= ;
(2)对于0°<∠A<180°,∠A的正对值sadA的取值范围是 ;
(3)如图②,已知sinA=
,其中∠A为锐角,试求sadA的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】
地和
地之间的铁路交通设有特快列车和普通列车两种车次,某天一辆普通列车从A地出发匀速驶向
地,同时另一辆特快列车从
地出发匀速驶向
地,两车与
地的距离
(千米)与行驶时间
(时)的函数关系如图所示. 
(1)
地到
地的距离为 千米,普通列车到达
地所用时间为 小时;(2)求特快列车与
地的距离
与
的函数关系式;(3)在
、
两地之间有一座铁路桥,特快列车到铁路桥后又行驶
小时与普通列车相遇,直接写出
地与铁路桥之间的距离 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长方形ABCD中,点P沿着边按B→C→D→A方向运动,开始以每秒m个单位匀速运动、a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动,在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.

(1)直接写出长方形的长和宽;
(2)求m,a,b的值;
(3)当P点在AD边上时,直接写出S与t的函数解析式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )

A. 76° B. 78° C. 80° D. 82°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是( )

A. 4个 B. 3个 C. 2个 D. 1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:


(1)这次被调查的学生共有 人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
相关试题