【题目】如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,点E在弧BD上,连接DE,AE,连接CE并延长交AB于点F,∠AED=∠ACF.![]()
(1)求证:CF⊥AB;
(2)若CD=4,CB=4
,cos∠ACF=
,求EF的长.
参考答案:
【答案】
(1)
证明:连接BD,
∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠1=90°,
∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴∠DAB+∠3=90°,
∴∠CFA=180°﹣(DAB+∠3)=90°,∴CF⊥AB;
(2)
解:连接OE,
∵∠ADB=90°,∴∠CDB=180°﹣∠ADB=90°,
∵在Rt△CDB中,CD=4,CB=4
,
∴DB=
,
∵∠1=∠3,∴cos∠1=cos∠3=
,∴AB=10,
∴OA=OE=5,AD=
,
∵CD=4,∴AC=AD+CD=10,
∵CF=ACcos∠3=8,∴AF=
,
∴OF=AF﹣OA=1,∴EF=
.
![]()
【解析】(1)连接BD,由AB是圆O的直径,得到∠ADB=90°,根据余角的性质得到∠CFA=180°-(∠DAB+∠3)=90°,于是得到结论;
(2)连接OE,由∠ADB=90°,得到∠CDB=180°-∠ADB=90°,根据勾股定理得到DB=
=8,解直角三角形得到CD=4,根据勾股定理即可得到结论。
【考点精析】解答此题的关键在于理解余角和补角的特征的相关知识,掌握互余、互补是指两个角的数量关系,与两个角的位置无关,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=10,AD=8,则AE的长为

-
科目: 来源: 题型:
查看答案和解析>>【题目】有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是 , 此时按游戏规则填写空格,所有可能出现的结果共有种.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,AB⊥BD,
=
,将ABCD放置在平面直角坐标系中,且AD⊥x轴,点D的横坐标为1,点C的纵坐标为3,恰有一条双曲线
(k>0)同时经过B、D两点,则点B的坐标是
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).

(1)当t=s时,△BPQ为等腰三角形;
(2)当BD平分PQ时,求t的值;
(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
(m<0)的顶点为A,交y轴于点C.
(1)求出点A的坐标(用含m的式子表示);
(2)平移直线y=x经过点A交抛物线C于另一点B,直线AB下方抛物线C上一点P,求点P到直线AB的最大距离
(3)设直线AC交x轴于点D,直线AC关于x轴对称的直线交抛物线C于E、F两点.若∠ECF=90°,求m的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )

A.y=x+5
B.y=x+10
C.y=﹣x+5
D.y=﹣x+10
相关试题