【题目】如图,在下列解答中,填写适当的理由或数学式: ![]()
(1)∵∠A=∠CEF,( 已知 )
∴∥; ()
(2)∵∠B+∠BDE=180°,( 已知 )
∴∥;()
(3)∵DE∥BC,( 已知 )
∴∠AED=∠; ()
(4)∵AB∥EF,( 已知 )
∴∠ADE=∠ . ()
参考答案:
【答案】
(1)AB;EF;同位角相等,两直线平行
(2)DE;BC;同旁内角互补,两直线平行
(3)C;两直线平行,同位角相等
(4)DEF;两直线平行,内错角相等
【解析】解:(1)∵∠A=∠CEF,(已知)∴AB∥EF,(同位角相等,两直线平行);(2)∵∠B+∠BDE=180°,(已知)∴DE∥BC,(同旁内角互补,两直线平行);(3)∵DE∥BC,(已知)∴∠AED=∠C,(两直线平行,同位角相等)(4)∵AB∥EF,(已知)∴∠ADE=∠DEF(两直线平行,内错角相等).所以答案是:(1)AB;EF;同位角相等,两直线平行;(2)DE;BC;同旁内角互补,两直线平行;(3)C;两直线平行,同位角相等;(4)DEF;两直线平行,内错角相等.
【考点精析】解答此题的关键在于理解平行线的判定与性质的相关知识,掌握由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图直角坐标系中,矩形ABCD的边BC在x轴上,点B、D的坐标分别为B(1,0),D(3,3).

(1)点C的坐标 ;
(2)若反比例函数
的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,使得
,求点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,求这个百分率是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】2016年里约奥运会,中国女排的姑娘们在郎平教练指导下,通过刻苦训练,取得了世界冠军,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.
(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).
(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.
(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知⊙O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD
(1) 求证:E是OB的中点
(2) 若AB=8,求CD的长

-
科目: 来源: 题型:
查看答案和解析>>【题目】列方程解应用题:
为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形纸片ABCD中,
,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F
CD时,
的值为__________.
相关试题